

 1

Combined application of Assembler and C languages in the Education of
Microcontrollers

L. Taneva, V. Hristov*

* South- West University- Bulgaria, 66 Ivan Mihajlov Street, Blagoevgrad,
Bulgaria, Phone (+359)738889132; E-mail: v_hristov@aix.swu.bg

Abstract. The educational system has to support a way of learning, combining
theoretical and practical approaches. The investigations prove that active learning, using
development tools is an effective way of receiving knowledge. The hardware platform and
the integrated software environment are good teaching tools and the students find the
course motivating. The hardware platform as well as the integrated software environment
and Combined application of Assembler and C languages offer knowledge that cannot be
learned in classical lectures.

The aim of the present paper is to describe the planning and conducting of an
experiment within the students’ groups educated in Microcontrollers and
Microprocessors (MCU/MP) architecture and application. The purpose of this
experiment is to analyze the integrated development environments (IDE) for software
development and to study the balance in programming with Assembler and C. Evaluation
criteria are defined for theoretical, practical skills and expected results. The obtained
results were analyzed.

1. Introduction.

The choice of program language is based on the complex task and level of
students’ programming skills. The existence of Integrated Development Environments
with embedded Assembler, C-compiler, In–Circuit Simulators and Debuggers makes
possible the development of software with program languages on low and high level. The
low-level language Assembler presents the binary code with mnemonic or symbolic code.
The relation between user and program requires a good knowledge of the system
structure - working with registers, buses and flags. Assembler is a language useful for an
effective program realization and hardware optimization. It translates the mnemonic
source code into a realizable binary code, defines the syntactic errors and shows them
before the stage of execution. The Assembler advantages are: fast execution of the source
code, small space of required program memory, possibilities and knowledge that increase
the program technique of high level languages. A disadvantage of the Assembler is the
required longer time for its learning and developing the program.

The high level С/С++/Embedded C gives an opportunity to use powerful
instructions for the program algorithm and decreases the development time.
Programming is usually ten times faster than programming in Assembler, especially
when the code is long. The disadvantage by using C is that the compiler is not effective –
it translates one instruction in a great number of binary instructions. The compiler does
not optimize the use of registers and transfers to most data between them. The compiler
generates two to five time more instructions than a well-written program in Assembler. It
requires more memory and the execution of the program code is two to five times slower.

 2

This paper describes the main results from a test carried out at school and
university with two groups of students. The aim is to compare how different teaching
approaches exert influence on the students’ learning process and to find the balance in
using pure C and C plus Assembler in learning MCU. The comparison between the two
groups of different age (18 yr. and 21 yr.) is possible because the level of memorizing
information is almost equivalent in both groups (fig. 5).

The development of a test on Microprocessors/Microcontrollers is not an easy
task because of the fact that the theoretical knowledge has to be estimated on the one
hand and the practical skills on the other hand. There are different strategies of education
with microcontrollers in the different universities. The difference is not only in the
lessons but also of the curricula in general. For example, in some schools learning MCU
is named “Organization of Electronic Machines” and education concerns the hardware
and the instruction set of Assembler. The students do not write a real source code in
Assembler – this code is for the compiler. In other schools the object is named
“Organization of PC and programming in Assembler” and hardware and software aspects
of the electronic device control are combined. Others learn “Computer Architectures” and
so on.

The analysis of different university curricula shows the existence of a great
number of approaches in teaching MCU. Their evaluation is a difficult task and requires
an estimation of the theoretical knowledge after the course. The test is a standard way to
do this. Another task is the estimation of practical skills – they could be evaluated by
developing programs for a concrete application and estimated according to the way and
the time for solving the problem, the complexity of the problem, the use of program
language, etc.

2. An experimental teaching on MCU.

During 2005/2006 the students of the 11th class of the Technological School

“Electronic Systems” were taught on MCU with Assembler and C programming
languages. At the same time the 3rd year students of the Southwest University “Neofit
Rilski” – Blagoevgrad were taught on MCU with C language only. The purpose of the
experiment is to evaluate the theoretical knowledge of the two groups by test after ending
the course. The expected result is that the level of knowledge of the group learning MCU
with Assembler and C will be better. Generally the experiment included 38 schoolboys
and schoolgirls from the high school (age 18) and 34 students (age 21). The lecturers
were the same people.

Two ways are used in the study of MCU: direct experimentation with laboratory
module SPS430 based on microcontroller MSP430F149 (TI) and simulation of the work
of MCU and the peripheral modules embedded in MCU using IDE Embedded
Workbench (IAR Systems). The module SPS430 is developed for educational purposes
and there are keyboard LEDs, buzzer, dynamic indication, potentiometer, etc. The
structure of methods used in the education on MCU is shown in fig.1.

 3

no

 yes

 no yes

 Fig.1. Methods of education on MCU.

The execution of all laboratory experiments is in accordance with specially

developed didactic materials for practical work in a laboratory environment (fig.2). The
description of modules, the working rules and example programs are given. It is
important to note that this experience should be understood as a new way to learn and not
as a final proposal. The techniques used in this study to measure the learning results or, in
other terms, the knowledge that the student acquires in a certain period of time are a test.
This test consists of ten questions and three possible answers to choose from them. In
each group of answers there is one correct answer.

Theory (Lectures).
Example: Introducing MCU or peripheral module –

characteristics, scheme, functions, work, program model.

Learning theory
(Individual work)

Laboratory exercise. Introducing the theme and the aim.
Describing the tasks of the exercise.

Execution of working example programs in Assembler/С.

Developing individual programs

 TEST

Real results?

Successful
test? End

 4

Fig.2. Education on microcontrollers.

2. Results from different teaching strategies.

The dispersion analysis made on the test results from the examination on MCU is
given here. The two groups are estimated using an original ten-grade scale of 1
(minimum) to 10 (maximum) assessments.

0

1

2

3

4

5

6

10 9 8 7 6 5 4 3 2 1

0
2
4
6
8

10
12
14

10 9 8 7 6 5 4 3 2 1

 Fig. 3 Histogram of test results of Fig. 4 Histogram of test results
 the first group (students). of the second group (schoolboys).

Two extracts are made for each group and the received results are given in
histograms (fig.3, fig.4). The course of the dispersion analysis is shown in Table 1. The
arithmetic mean of the different extracts (groups) and the general arithmetic mean are
calculated by formula 3:

(3)
n

x
x ∑=

The deviation calculation between the groups is given in Table 1. The general
deviation: =−∑ 2)(xx 388.9861 is calculated by a consecutive subtraction of the

general arithmetic mean mark =x 6.2361 from the examination mark of every student
and the obtained results are squared.

Microcontroller
MSP430F149

Example
programs

Output
 (result)

Simulator Laboratory
module SPS430

Programs for individual tasks

 5

 Table1. The course of dispersion analysis.
Year
2005/2
006

Number
of
students
(if)

Sum
of
point
s
from
the
test
(x)

Arithmetic mean of
the different groups
(ix)

xxi − (xxi −) 2 (xxi −) 2
if

TUES 38
251

 6.6053 0.3692 0.1363 5.1784

SWU 34
198

 5.8235 -0.4126 0.1702 5.7876

 72 6.2361 10.966

 The deviation between the groups or, the sum of squares from the differences
between the examination marks of individual students in the groups and the group
arithmetic means, is found by the general and between the groups deviations that are
already calculated

(4) =−−−=− ∑∑∑ iii fxxxxxx 222)()()(388.986 - 10.966 =378.02
 The variation degrees of freedom between the groups are k – 1 = 1 since the groups
are two in general and inside the groups n – k = 70.
 The two dispersion estimations are found on the basis of deviations between
the groups and inside the groups:

(5)
1

)(2
2

−

−
= ∑

k
fxx ii

Mσ = 10.966

(6)
kn
xx i

B −

−
= ∑

2
2)(

σ = 378.02 /70 = 5.4003

The relation between the two assessments of the dispersion is:

(7) == 2

2

B

MF
σ
σ 2.031

To verify whether the combined application of languages C and Assembler in
the respective laboratory exercises considerably exerts influence on the quality of
education, a level of importance 0.01 is chosen. The Table for F distribution at level of
importance 0.01shows that at degrees of freedom k – 1 = 1 и n – k = 70 the critical value
of F is 7.011 (see the function in Microsoft Excel FINV (0.01; 1;70)=7.011).
 Out of that the empiric characteristics (obtained on the basis of the two dispersion
estimations), F = 2.031 is smaller than the critical value (F=7.011) at level of significance
0.01, it follows that data tests do not give grounds to consider that the knowledge and use
of Assembler language influences significantly on the acquired knowledge and skills of
MPT.

 6

Fig. 5. Level of memorizing information in the different age groups.

CONCLUSIONS

The education with Assembler and C languages did not contribute significantly to the
improvement in the students’ learning process in comparison with C language education.
On the other hand, the education with Assembler plus C language gave generally the best
results: students seem to reach a better level of knowledge, ability and practice with
microcontrollers. A number of conclusions can be drawn: the choice of program language
has to be made after estimating the level of C-language knowledge and the program
complexity.
- If the level of programming skills is not high and the program is too complex, using
Assembler is irrelevant. In this case the program can be written very fast with high level
language and debugging is very easy for beginners. The high level languages are good for
writing programs by programmers without practice, especially in embedded systems.
This fact is important for laboratory practice where the aim is the right using of program
functions and not effectiveness.
- If the level of programming skills is high and the program is simple, using Assembler is
appropriate. There is a possibility to work directly with the hardware and acquire
knowledge about how the microcontroller acts on the lowest level. When the source code
is short, it can be optimized to work with maximum effectiveness depending on the
concrete hardware. In general, the bigger source code could decrease the effectiveness of
the program work because of the too many details, which could be concerned. In this
case, using Assembler is not appropriate.

REFERENCES
[1] Shtrakov S., Kalpachka G., Stoilov A., Computer Training Tests for Control and
Evaluation of Student’ Achievements, Е+Е, 2005, i. 3-4, p. 68-73.
[2] Dosev L., Pedagogical Psychology
[4] T. K. Hamrita and R. McClendon, A New Approach for Teaching Microcontroller
Courses, International Journal of Engineering Education, Vol. 13, No. 4, pp269-274,
1997.
 [5] Vandev D., Theory of Probability and Mathematical Statistics, Sofia, 2002, Science
and Art.

