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Abstract

In this paper, we consider the problem of minimizing a strictly convex separa-
ble function over a feasible region defined by a convex inequality constraint and
two-sided bounds on the variables (box constraints). Also, the convex separable
program with a strictly convex objective function subject to linear equality con-
straints and bounded variables is considered. These problems are interesting from
both theoretical and practical point of view because they arise in some mathematical
programming problems and in various practical problems. Characterization theo-
rems (necessary and sufficient conditions) for the optimal solution to the considered
problems are proved. Some illustrative examples are also presented.
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1 Introduction

Consider the following strictly convex separable program with strictly convex inequality
constraint and bounded variables
(SCS)

min
{
c(x) =

∑
j∈J

cj(xj)
}

(1.1)

subject to
d(x) ≡

∑
j∈J

dj(xj) ≡
∑
j∈J

djx
p
j ≤ α (1.2)

aj ≤ xj ≤ bj, j ∈ J, (1.3)

where cj(xj) are strictly convex differentiable functions, c′j(xj) > 0, dj > 0, xj > 0 for

every j ∈ J , p > 1, x = (xj)j∈J , and J
def
= {1, . . . , n}.

Functions dj(xj), j ∈ J , are also stricly convex because d′′j (xj) ≡ p(p− 1)xp−2
j > 0, j ∈

J , under the assumptions. In particular, since xj > 0, j ∈ J , then aj > 0, bj > 0, j ∈ J .



Feasible region X, defined by (1.2) – (1.3), is intersection of the half-space (1.2) and
the n−dimensional box (1.3). Therefore X is a convex set.

One of the most important problems of the form (SCS) is the program with cj(xj) =
cjx

q
j , j ∈ J . Functions cj(xj) = cjx

q
j are strictly convex for cj > 0, xj > 0, j ∈ J, q > 1, and

the assumption c′j(xj) ≡ qcjx
q−1
j > 0, j ∈ J , is also satisfied for cj > 0, xj > 0, j ∈ J, q > 1

in this case.
Problem (SCS) is a convex separable programming problem because the objective func-

tion and constraint function are convex (moreover, strictly convex) and separable (that
is, these functions can be expressed as the sums of single-variable functions). Because of
the strict convexity, if problem (SCS) is solvable, its solution is unique.

Also, consider the following convex separable program with strictly convex objective
function subject to linear equality constraints and bounded variables
(C=

m)

min
{
c(x) =

∑
j∈J

cj(xj)
}

(1.4)

subject to
Dx = α (1.5)

a ≤ x ≤ b, (1.6)

where cj(xj) are strictly convex differentiable functions, j ∈ J , D = (dij) ∈ IRm×n, α ∈
IRm, a = (a1, . . . , an), b = (b1, . . . , bn) ∈ IRn.

The feasible region X=, defined by (1.5) – (1.6), is an intersection of m hyperplanes
(1.5) and the box (1.6). Therefore X= is a convex set.

Problem (C=
m) is also a convex separable programming problem because the objective

function and constraint functions are convex and separable. Because of the strict convexity
of objective function, if problem (C=

m) is solvable, its solution is unique.
Problems (SCS) and (C=

m), defined by (1.1) – (1.3) and (1.4) – (1.6), respectively,
and related to them, arise in production planning and scheduling [18], in allocation of
resources [1, 5, 6, 18, 20], in decision making [1, 5, 6, 20], in the theory of search, in
facility location [7, 9, 20], etc.

Problems like (SCS) and (C=
m) are subject of intensive study. Related problems and

methods for them are considered in [1 – 20]. Algorithms for resource allocation problems
are proposed in [1, 5, 6, 18, 20], and algorithms for facility location problems are suggested
in [7], etc. Singly constrained quadratic programs with bounded variables are considered
in [3, 4], and some separable programs are considered and methods for solving them are
suggested in [2, 8 – 19], etc.

This paper is devoted to solution of problems (SCS) and (C=
m). The paper is organized

as follows. In Section 2, characterization theorems (necessary and sufficient conditions)
for the optimal solution to problems (SCS) and (C=

m) are proved. Due to the specific form
of the optimal solution to problem (SCS), this solution can be obtained directly and it is
not necessary to develop iterative algorithms for solving problem (SCS). In Section 3 we
present results of two simple illustrative examples for both problem (SCS) and problem
(C=

m).
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2 Characterization theorems

2.1 Problem (SCS)

Consider problem (SCS) defined by (1.1) – (1.3).
Suppose that following assumptions are satisfied.
(A1) aj ≤ bj for all j ∈ J . If ak = bk for some k ∈ J , then the value xk := ak = bk is

determined in advance.
(A2)

∑
j∈J dja

p
j ≤ α. Otherwise the constraints (1.2) – (1.3) are inconsistent and

X = ∅, where the feasible region X is defined by (1.2) – (1.3).
The Lagrangian for problem (SCS) is

L(x,u,v, λ) =
∑
j∈J

cj(xj) + λ
( ∑

j∈J

djx
p
j − α

)
+

∑
j∈J

uj(aj − xj) +
∑
j∈J

vj(xj − bj), (2.1)

where λ ∈ IR1
+;u,v ∈ IRn

+, and IRn
+ consists of all vectors with n real nonnegative compo-

nents.
The Karush-Kuhn-Tucker (KKT) necessary and sufficient optimality conditions for

the minimum solution x∗ = (x∗j)j∈J to problem (SCS) are

cj(x
∗
j) + λpdj.(x

∗
j)

p−1 − uj + vj = 0, j ∈ J (2.2)

uj(aj − x∗j) = 0, j ∈ J (2.3)

vj(x
∗
j − bj) = 0, j ∈ J (2.4)

λ
( ∑

j∈J

dj.(x
∗
j)

p − α
)

= 0, λ ∈ IR1
+ (2.5)

∑
j∈J

dj.(x
∗
j)

p ≤ α (2.6)

aj ≤ x∗j ≤ bj, j ∈ J (2.7)

uj ∈ IR1
+, vj ∈ IR1

+, j ∈ J, (2.8)

where λ, uj, vj, j ∈ J , are the Lagrange multipliers associated with the constraints (1.2),
aj ≤ xj, xj ≤ bj, j ∈ J , respectively. If aj = −∞ or bj = +∞ for some j, we do not
consider the corresponding condition (2.3) ((2.4), respectively) and Lagrange multiplier
uj (vj, respectively).

According to conditions (2.2) – (2.8), λ ≥ 0, uj ≥ 0, vj ≥ 0, j ∈ J , and complementary
conditions (2.3), (2.4), (2.5) must be satisfied. In order to find x∗j , j ∈ J , from system (2.2)
– (2.8), we have to consider all possible cases for λ, uj, vj: all λ, uj, vj equal to 0; all λ, uj, vj

different from 0; some of them equal to 0 and some of them different from 0. The number
of these cases is 22n+1, where 2n+1 is the number of all λ, uj, vj, j ∈ J, |J | = n. This is an
enormous number of cases, especially for large-scale problems. Moreover, in each case we
have to solve a large-scale system of nonlinear equations in x∗j , λ, uj, vj, j ∈ J . Therefore
the direct application of the KKT theorem, using explicit enumeration of all possible
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cases, for solving large-scale problems of the considered form would not be effective. That
is why, we need efficient methods for solving the considered problem.

Theorem 2.1 gives a characterization of the optimal solution to problem (SCS). Its
proof is based on the KKT theorem.

Theorem 2. 1 (Characterization of the optimal solution to problem (SCS)) The point
x∗ = (x∗j)j∈J is the optimal solution to problem (SCS) if and only if

x∗ = (a1, . . . , an). (2.9)
Proof. Necessity. Let x∗ = (x∗j)j∈J be the optimal solution to (SCS). Then there

exist nonnegative constants λ, uj, vj, j ∈ J , such that KKT conditions (2.2) – (2.8) are
satisfied. Consider both possible cases for λ.

(1) Let λ > 0. Then system (2.2) – (2.8) becomes (2.2), (2.3), (2.4), (2.7), (2.8) and∑
j∈J

dj.(x
∗
j)

p = α, (2.10)

that is, the inequality constraint (1.2) is satisfied with an equality for x∗j , j ∈ J , in this
case.

(a) If x∗j = aj, then uj ≥ 0, and vj = 0 according to (2.4). Therefore (2.2) implies
c′j(x

∗
j) = uj − λpdj.(x

∗
j)

p−1 ≥ −λpdj.(x
∗
j)

p−1. Since dj > 0, x∗j > 0, j ∈ J, p > 1, then

λ ≥ −
c′j(x

∗
j)

pdj.(x∗j)
p−1

≡ −
c′j(aj)

pdja
p−1
j

. (2.11)

Because c′j(.) > 0, dj > 0, aj > 0, j ∈ J, p > 1 (> 0), and λ ≥ 0, the inequality (2.11) is
always satisfied.

(b) If x∗j = bj, then uj = 0 according to (2.3), and vj ≥ 0. Therefore (2.2) implies
c′j(x

∗
j) = −vj − λpdj.(x

∗
j)

p−1 ≤ −λpdj.(x
∗
j)

p−1. Hence

λ ≤ −
c′j(x

∗
j)

pdj.(x∗j)
p−1

≡ −
c′j(bj)

pdjb
p−1
j

. (2.12)

Since c′j(.) > 0, dj > 0, bj > 0, j ∈ J, p > 1 (> 0), then

−
c′j(bj)

pdjb
p−1
j

< 0, (2.13)

and since λ must be nonnegative, from (2.12) and (2.13) it is obvious that this case is
impossible.

(c) If aj < x∗j < bj, then uj = vj = 0 according to (2.3) and (2.4). Therefore (2.2)
implies

−c′j(x
∗
j) = λpdj.(x

∗
j)

p−1. (2.14)

Since c′j(.) > 0, dj > 0, x∗j > 0, j ∈ J, p > 1 by the assumption, and λ ≥ 0, from (2.14) it
follows that this case is impossible.

(2) Let λ = 0. Then system (2.2) – (2.8) becomes

c′j(x
∗
j)− uj + vj = 0, j ∈ J (2.15)
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and (2.3), (2.4), (2.6), (2.7), (2.8).
(a) If x∗j = aj, then uj ≥ 0, vj = 0. Therefore

c′j(aj) ≡ c′j(x
∗
j) = uj ≥ 0. (2.16)

Since c′j(.) > 0 by the assumption, then (2.16) is always satisfied.
(b) If x∗j = bj, then uj = 0, vj ≥ 0. Therefore

c′j(bj) ≡ c′j(x
∗
j) = −vj ≤ 0. (2.17)

Since c′j(.) > 0, this case is impossible.
(c) If aj < x∗j < bj, then uj = vj = 0. Therefore c′j(x

∗
j) = 0, and since c′j(.) > 0, this

case is impossible.
As we have proved, in both cases (1) and (2), only subcase (a) is possible, that is,

x∗ = (a1, . . . , an). The “necessity” part is proved.

Sufficiency. Conversely, let x∗ = (a1, . . . , an). Obviously x∗ ∈ X, where X is defined
by (1.2) – (1.3).

Set
uj = c′j(aj) + λpdja

p−1
j (≥ 0 under the assumptions), vj = 0. (2.18)

By using these expressions, it is easy to check that x∗j , λ, uj, vj, j ∈ J , satisfy conditions
(2.2), (2.3), (2.4), (2.5), (2.8); conditions (2.6) and (2.7) are also satisfied because x∗ =
(a1, . . . , an) ∈ X.

Since (2.2) – (2.8) are necessary and sufficient conditions for an optimal solution to
the convex minimization problem (SCS), then x∗ is an optimal solution to this problem,
and since c(x) is a strictly convex function as the sum of strictly convex functions, this
optimal solution is unique. �

2.2 Problem (C=
m)

Denote by Pc(D, α, a,b) the solution to problem (C=
m). Since c(x) is strictly convex as

the sum of strictly convex functions, then Pc(D, α, a,b) is uniquely defined, that is, there
is at most one minimum which is both local and global.

Denote y = [x]ba where yj = min{max{xj, aj}, bj} for each j ∈ J .
The KKT conditions for x∗ ∈ IRn to be minimum solution to problem (C=

m) are

Dx∗ = α (2.19)

a ≤ x∗ (2.20)

x∗ ≤ b (2.21)

c′(x∗) + DT λ− u + v = 0 (2.22)

uj(aj − x∗j) = 0, j ∈ J (2.23)

vj(x
∗
j − bj) = 0, j ∈ J (2.24)

u ≥ 0 (2.25)
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v ≥ 0, (2.26)

where λ ∈ IRm, u,v ∈ IRn
+ are the Lagrange multipliers associated with (1.5) and the two

inequalities of (1.6), respectively.
The map c′ ≡ ∇c : IRn → IRn is strict monotone increasing since c is a strictly convex

function. Therefore (∇c)−1 : IRn → IRn is well-defined.

Theorem 2. 2 (Characterization of the optimal solution to problem (C=
m)) Let c : IRn →

IR be separable, differentiable and strictly convex. Then

{Pc(D, α, a,b)} =
{
(c′)−1

[
−DT t

]c′(b)

c′(a)
: t ∈ IRm

}
, (2.27)

where D, α, a,b are defined above.

Proof. Relation (2.27) is proved by two-way inclusion.
(1) Let x∗ = Pc(D, α, a,b) for some α ∈ IRm. Then there exist λ ∈ IRm, u,v ∈ IRn

+

satisfying the KKT conditions (2.19) – (2.26) together with this x∗.
From (2.22) it follows that

DT λ = −c′(x∗) + u− v, (2.28)

that is,
〈Dj, λ〉 = −c′j(x

∗
j) + uj − vj (2.29)

for each j ∈ J where 〈x,y〉 denotes the inner (scalar) product of x and y in IRn.
If 〈Dj, λ〉 > −c′j(x

∗
j), then uj > vj ≥ 0, so x∗j = aj according to (2.23), that is,

〈Dj, λ〉 > −c′j(x
∗
j) implies x∗j = aj. (2.30)

Similarly, if 〈Dj, λ〉 < −c′j(x
∗
j), then vj > uj ≥ 0, so x∗j = bj according to (2.24), that

is,
〈Dj, λ〉 < −c′j(x

∗
j) implies x∗j = bj. (2.31)

Since aj ≤ bj, j ∈ J , by assumption, we have three cases to consider.

Case 1. 〈Dj, λ〉 > −c′j(aj).
Then 〈Dj, λ〉 > −c′j(x

∗
j) according to (2.20) and the monotonicity of c′j. Hence x∗j = aj

in accordance with (2.30).

Case 2. 〈Dj, λ〉 < −c′j(bj).
Then 〈Dj, λ〉 < −c′j(x

∗
j) according to (2.21) and the monotonicity of c′j. Hence x∗j = bj

in accordance with (2.31).

Case 3. −c′j(bj) ≤ 〈Dj, λ〉 ≤ −c′j(aj).
If 〈Dj, λ〉 < −c′j(x

∗
j), then x∗j = bj according to (2.31). Therefore 〈Dj, λ〉 ≥ −c′j(x

∗
j)

because 〈Dj, λ〉 ≥ −c′j(bj) by the assumption of Case 3, a contradiction. Similarly, if we
assume that 〈Dj, λ〉 > −c′j(x

∗
j) strictly, this would imply x∗j = aj according to (2.30) and

〈Dj, λ〉 ≤ −c′j(x
∗
j), a contradiction.

Then 〈Dj, λ〉 = −c′j(x
∗
j), so it follows that x∗j = (c′j)

−1(−〈Dj, λ〉).

6



In the three cases considered, we have

x∗j = (c′j)
−1

[
− 〈Dj, λ〉

]c′
j(bj)

c′
j(aj)

. (2.32)

Hence x∗ = (c′)−1
[
−DT λ

]c′(b)

c′(a)
, that is,

{Pc(D, α, a,b)} ⊆
{
(c′)−1

[
−DT t

]c′(b)

c′(a)
: t ∈ IRm

}
. (2.33)

(2) Conversely, suppose that x∗ ∈ IRn and x∗ = (c′)−1
[
−DT t

]c′(b)

c′(a)
for some t ∈ IRm.

Set:

α = D(c′)−1
[
−DT t

]c′(b)

c′(a)

λ = t
u = c′(a) + DT t
v = −c′(b)−DT t.

We have to prove that x∗, α, λ,u,v satisfy the KKT conditions (2.19) – (2.26).
Obviously x∗ and α satisfy (2.19), x∗ satisfies (2.20) and (2.21) (these are (1.6) with

x = x∗) according to definition of [x]ba and monotonicity of c′.
In order to verify (2.22) – (2.26), we consider each j ∈ J . There are three possible

cases.

Case 1. 〈Dj, t〉 > −c′j(aj).
Then c′j(aj) + 〈Dj, t〉 > 0, and since aj ≤ bj, then −c′j(bj) − 〈Dj, t〉 < 0. Therefore

x∗j = aj, λ = t, uj = c′j(aj) + 〈Dj, t〉, vj = 0.
Case 2. 〈Dj, t〉 < −c′j(bj).
Then −c′j(bj) − 〈Dj, t〉 > 0, and since aj ≤ bj, then c′j(aj) + 〈Dj, t〉 < 0. Therefore

x∗j = bj, λ = t, uj = 0, vj = −c′j(bj)− 〈Dj, t〉.
Case 3. −c′j(bj) ≤ 〈Dj, t〉 ≤ −c′j(aj).

Then −c′j(bj)−〈Dj, t〉 ≤ 0, 〈Dj, t〉+c′j(aj) ≤ 0. Therefore x∗j = (c′)−1
j (−〈Dj, t〉), λ =

t, uj = vj = 0.
Obviously in each of the three cases, x∗j , uj, vj(j ∈ J), λ satisfy (2.22) – (2.26) as well.
Therefore x∗, α, λ,u,v satisfy the KKT conditions (2.19) – (2.26), so x∗ ∈ Pc(D, α, a,b)

according to definition of Pc(D, α, a,b).
The two-way inclusion implies (2.27). �

Define the functions x : IRm → IRn, α : IRm → IRm by

x(t) = (c′)−1
[
−DT t

]c′(b)

c′(a)
(2.34)

α(t) = D(c′)−1
[
−DT t

]c′(b)

c′(a)
(2.35)

Then the following Corollary holds.
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Corollary 2. 1 Vectors x∗ ∈ IRn, α∗ ∈ IRm satisfy x∗ = Pc(D, α∗, a,b) if and only if
there exists t∗ ∈ IRm such that

x(t∗) = x∗ (2.36)

α(t∗) = α∗. (2.37)

Proof of Corollary 2.1 follows from the statement of problem (C=
m) and (2.27).

From Corollary 2.1 it follows that x∗ = Pc(D, α∗, a,b) can be solved with respect to
x∗ for given α∗ by first solving (2.37) for t∗ and then calculating x∗ by using (2.36).

Let S be the set of solutions to (2.37) for a particular value of α∗:

S = {t ∈ IRm : α(t) = α∗}. (2.38)

According to (2.35), each component of α(t) is a linear combination of the same set

of terms. Each term (c′)−1
[
−DT t

]c′
j(bj)

c′
j(aj)

is a smooth function of t except on the pair of

break hyperplanes

Aj = {t ∈ IRm : 〈Dj, t〉 = −c′j(aj)}, (2.39)

Bj = {t ∈ IRm : 〈Dj, t〉 = −c′j(bj)}. (2.40)

In the case when m = 1, that is, when there is a single linear equality constraint of
the form (1.5) in problem (C=

m), the break hyperplanes are reduced to break points.

3 Illustrative examples

In this section, we illustrate application of Theorem 2.1 and Theorem 2.2 to simple par-
ticular problems.

Example 1. Solve the problem

min
{
c(x) = x3

1 + x3
2

}
subject to

x2
1 + 2x2

2 ≤ 10

1 ≤ x1 ≤ 3

1 ≤ x2 ≤ 5.

This problem is of the form (SCS) with cj(xj) = cjx
q
j , q = 3, c1 = 1, c2 = 1, p =

2, d1 = 1, d2 = 2, α = 10, a1 = 1, b1 = 3, a2 = 1, b2 = 5. Objective function c(x) = x3
1 + x3

2

is strictly convex for the feasible x = (x1, x2) ≥ (1, 1), and constraint function d(x) =
x2

1 + 2x2
2 is strictly convex for every x ∈ IR2.

The optimal solution, obtained by Theorem 2.1, is

x∗ = (x∗1, x∗2) = (1, 1),
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and
cmin = c(x∗) = 2.

Example 2. Solve the problem

min
{
c(x) = 4x2

1 + 10x2
2 + 4x2

3 + 3x2
4 + 7x2

5 + 3x2
6 + x2

7

}
subject to

7∑
j=1

xj = 72

4 ≤ x1 ≤ 7

4.5 ≤ x2 ≤ 10

8 ≤ x3 ≤ 13

5 ≤ x4 ≤ 8

4 ≤ x5 ≤ 7

30 ≤ x6 ≤ 40

4 ≤ x7 ≤ 7.

This problem is of the form (C=
m) with m = 1, n = 7; cj(xj) = cjx

q
j , q = 2; α = 72; dj =

1, j = 1, . . . , 7; c = (cj)
7
j=1 = (4, 10, 4, 3, 7, 3, 1),

a = (aj)
7
j=1 = (4, 4.5, 8, 5, 4, 30, 4), b = (bj)

7
j=1 = (7, 10, 13, 8, 7, 40, 7).

The optimal solution is

x∗ = (7, 4.5, 9.8636, 8, 5.6363, 30, 7),

and
cmin = c(x∗) = 3951.0454.
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