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ABSTRACT. We prove a necessary and sufficient condition for the existence of spreads in the projective
Hjelmslev geometries PHG�Rn�1

R �. Further, we give a construction of projective Hjelmslev planes from
spreads that generalizes the familiar construction of projective planes from spreads in PG�n�q�.
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1. INTRODUCTION

In this paper, we investigate spreads in the projective Hjelmslev geometries PHG�Rn�1
R �. There exists

an extensive literature about spreads in the projective geometries PG�k�q� (cf. [6] and the references
there). The same objects in the ring geometries have attracted little or no attention despite the connections
to interesting areas as linear codes over finite chain rings.

In what follows, we restrict ourselves to spreads in geometries over chain rings of nilpotency index
2. Since geometries over rings have less regularities than the usual projective geometries, we settle for a
problem that is tractable to some extent. On the other hand, this is a necessary step towards investigating
geometries over chain rings of larger nilpotency index, because of the nested structure of the projective
Hjelmslev geometries. Finally, there exists a complete classification for the chain rings R with �R�� q2 ,
R� radR�� �q .

In Section 2, we give some basic facts about finite chain rings and the structure of projective Hjelmslev
geometries over such rings. In Section 3, we prove a necessary and sufficient condition for the existence
of spresds in the projective Hjelmslev geometries PHG�Rn�1

R �, where R is a finite chain ring of nilpo-
tency index 2. In Section 4, we present a construction for projective Hjelmslev palens from spreads in
PHG�Rn�1

R �. Finally, some open problems are posed.

2. BASIC FACTS ON PROJECTIVE HJELMSLEV GEOMETRIES

A finite ring R (associative, with identity 1 �� 0, ring homomorphisms preserving the identity) is called
a left (resp. right) chain ring if its lattice of left (resp. right) ideals forms a chain. It turns out that every
left ideal is also a right ideal. Moreover, if N � radR every proper ideal of R has the form Ni �Rθi � θiR,
for any θ � N �N2 and some positive integer i. The factors Ni�Ni�1 are one-dimensional linear spaces
over R�N. Hence, if R�N �� �q and m denotes the nilpotency index of N, the number of elements of R is
equal to qm. For further facts about chain rings, we refer to [3, 15, 16].

As mentioned above, we consider chain rings of nilpotency index 2, i.e. chain rings with N �� �0� and
N2 � �0�. Thus we have always �R� � q2, where R�N �� �q . Chain rings with this property have been
classified in [4, 19]. If q � pr there are exactly r�1 isomorphism classes of such rings. These are:
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� for every σ � Aut�q the ring Rσ �� �q �X ;σ���X2� of so-called σ-dual numbers over �q with underly-
ing set �q ��q , component-wise addition and multiplication given by �x0�x1��y0�y1� �

�
x0y0�x0y1 �

x1σ�y0�
�
;

� the Galois ring GR�q2� p2� �� �p2�X ��� f �X��, where f �X� � �p2�X � is a monic polynomial of degree
r, which is irreducible modulo p.

The rings Rσ with σ �� id are noncommutative. Further Rid is commutative and charRσ � p for every
σ. The Galois ring GR�q2� p2� is commutative and has characteristic p2. From now on we denote by R
any finite chain ring of nilpotency index 2.

Let R be a finite chain ring and consider the module M � Rk
R. Denote by M� the set of all non-torsion

vectors of M, i.e. M� � M �Mθ. Define sets P and L by

P � �xR;x �M�	�

L � �xR� yR;x�y linearly independent	�

respectively, and take as incidence relation I 
 P �L set-theoretical inclusion. Further, define a neigh-
bour relation �

� on the sets of points and lines of the incidence structure �P �L� I� as follows:

(N1) the points X �Y � P are neighbours (notation X �
� Y ) if there exist two different lines incident

with both of them;
(N2) the lines s� t � L are neighbours (notation s �

� t) if there exist two different points incident with
both of them.

The incidence structureΠ��P �L� I�with the neighbour relation �
� is called the �k�1�-dimensional

(right) projective Hjelmslev geometry over R and is denoted by PHG�Rk
R�.

The point set S 
 P is called a Hjelmslev subspace (or simply subspace) of PHG�Rk
R� if for every two

points X �Y � S , there exists a line l incident with X and Y that is incident only with points of S . The
Hjelmslev subspaces of PHG�Rk

R� are of the form �xR;x � �M���	, where M� is a free submodule of M.
The (projective) dimension of a subspace is equal to the rank of the underlying module minus 1.

It is easily checked that �
� is an equivalence relation on each one of the sets P and L . If �X � denotes

the set of all points that are neighbours to X � xR, then �X � consists of all free rank 1 submodules of
xR�Mθ. Similarly, the class �l� of all lines which are neighbours to l � xR� yR consists of all free rank
2 submodules of xR� yR�Mθ.

More generally, two subspaces S and T , dimS � s, dimT � t, s� t, are neighbours if

��X �;X � S	 
 ��X �;X � T 	�

In particular, we say that the point X is a neighbour of the subspace S if there exists a point Y � S with
X �

� Y . The neighbour class �S � contains all subspaces of dimension s that are neighbours to S .
The next theorems give some insight into the structure of the projective Hjelmslev geometries PHG�Rk

R�
and are part of more general results [1, 5, 8, 12, 13, 14, 21].

Theorem 2.1. Let Π� PHG�Rk
R� where R is a chain ring with �R�� q2, R�N �� �q . Then

(i) There are qk�1 
 qk
�1

q�1 points (hyperplanes) and q2�k�2� 
 �q
k
�1��qk�1

�1�
�q2

�1��q�1�
lines in Π;

(ii) every point (hyperplane) has qk�1 neighbours;
(iii) every subspace of dimension s�1 is contained in exactly q�t�s��k�t�

�k�s
t�s

�
q

subspaces of dimension

t�1, where s� t � k and
�n
k

�
q denotes the q-ary Gaussian binomial coefficient;

(iv) given a point P and a subspace S of dimension s�1 containing P, there exist exactly qs�1 points in
S that are neighbours to P.

Note that the Hjelmslev spaces PHG�Rk
R� are 2-uniform in the sense of [5]. Denote by η the natural

homomorphism from Rk to Rk�Rkθ and by η the mapping induced by η on the submodules of Rk. It is
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clear that for every point X and every line l we have

�X � � �Y � P ;η�Y � � η�X�	�

�l� � �m � L;η�m� � η�l�	�

Let us denote by P � (resp. L �) the set of all neighbour classes of points (resp. lines). The following result
is straightforward.

Theorem 2.2. The incidence structure �P ��L �� I�� with incidence relation I� defined by

�X � I� �l����Y � �X ���m � �l� : Y Im

is isomorphic to the projective geometry PG�k�1�q�

Let S0 be a fixed subspace in PHG�Rk
R� with dimS0 � s. Define the set � of subsets of P by

�� �S � �X �;X �
� S0�S � �S0�	�

The sets S � �X � are either disjoint or coincide. Define an incidence relation ����L by

�S � �X ��� l �� l� �S � �X �� �� /0�

Let L�S0� be the set of all lines in L incident with at least one point in�. For the lines l1� l2 � L�S0� we
write l1 � l2 if they are incident (under �) with the same elements of�. The relation� is an equivalence
relation under which L�S0� splits into classes of equivalent lines. Denote by � a set of representatives of
the equivalence classes of lines in L�S0�. The set of representatives � contains only two types of lines:
lines l with l �

� S0 and lines l with l ��
� S0.

Theorem 2.3. The incidence structure ������ ����� can be embedded into PG�k�1�q�.

A special case of this result is obtained if we take S0 to be a point. Given Π� �P �L� I� � PHG�Rk
R�

and a point P� P , let L�P� be the set of all lines in L incident with points in �P�. For two lines s� t �L�P�
we write s� t if s and t coincide on �P�. Denote by L1 a complete list of representatives of the lines from
L�P� with respect to the equivalence relation �. Then we have the following result:

Theorem 2.4.

��P��L1� I��P��L1
��� AG�k�1�q��

Finally, let two points X1 and X2 in Π � PHG�Rk
R� be neighbours. Then any two lines incident with

both X1 and X2 are neighbours and belong to the same class, �l� say. In such case we say that the neighbour
class �l� has the direction of the pair �X1�X2�.

3. EXISTENCE OF SPREADS IN PROJECTIVE HJELMSLEV GEOMETRIES

Definition 1. An r-spread of the projective Hjelmslev geometry PHG�Rn�1
R � is a set S of r-dimensional

subspaces such that every point is contained in exactly one subspace of S .

Set �
n
k

�
q
�

�qn�1��qn�1�1� � � ��qn�k�1�1�
�qk�1��qk�1�1� � � ��q�1�

�

Theorem 3.1. Let R be a chain ring with �R�� q2, R� radR�� �q . There exists a spread S of r-dimensional
spaces of PHG�Rn

R� if and only if r�1 divides n�1.
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Proof. The number of points in an r-dimensional subspace is qr
�r�1

1

�
q. The existence of a spread of r

dimensional subspaces implies that qr
�r�1

1

�
q divides qn

�n�1
1

�
q, i.e.

�r�1
1

�
q divides

�n�1
1

�
q, i.e. r�1 divides

n�1.
Assume that r� 1 divides n� 1 and let s be determined by n� 1 � �s� 1��r� 1�. First we consider

the case where R � GR�q2� p2�. Take an algebra of dimension r� 1 over R � GR�q2� p2�, e.g. let this
algebra be Rr�1 � R�X ��� f �X�� � GR�q2�r�1�� p2�, where f is a monic irreducible polynomial of degree
r�1 over R. If α is a root of f in Rr�1 then every element β from Rr�1 can be written as

β� b0�b1α� � � ��brαr� bi � R�

Clearly, Rs�1
r�1, Rn�1 and Rn�1 are isomorphic as modules over R. Thus each point in PHG�Rn�1

R � can be
represented by an �s�1�-tuple of elements from Rr�1 or as a unit in Rn�1. In the same time, every �s�1�-
tuple over Rr�1 that has at least one coordinate that is a unit, can be viewed as a point in PHG�Rs�1

r�1�.
Let �γ0�γ1� � � � �γs� � �Rs�1

r�1�
� be a nontorsion vector. Without loss of generality, let γ0 �� 0. Consider

the system

(1)

���������

�γ1x0 � γ0x1 � 0
�γ2x0 � � γ0x2 � 0

� � �
. . . � 0

�γsx0 � � γ0xs � 0

�

The choice of the nonzero element is not essential. If we take γ j �� 0. The system (1) is equivalent to
�γix j � γ jxi � 0 for i � 0�1� � � � �s, i �� j. The solutions of (1) form a free submodule of rank 1 Rs�1

r�1, i.e.
a point in PHG�Rs�1

r�1�. This rank 1 submodule can be considered as a free submodule of rank �r�1� of
Rn�1

R , i.e. a r-dimensional subspace of PHG�Rn�1
R �. Two �r�1�-dimensional subspaces in Rn�1

R obtained
from different 1-dimensional subspaces of Rs�1

r�1 do not have a common nontorsion vector.
Now consider two different points �γ0�γ1� � � � �γs� and �δ0�δ1� � � � �δs� in PHG�Rs�1

r�1�. These points
give rise to systems of the type (1) having as solutions different points of PHG�Rs�1

r�1� (1-dimensional
subspaces of Rs�1

r�1). Assume otherwise and let �x0�x1� � � � �xs� �� �0�0� � � � �0� be a common solution of the
two systems. Then

x0 � λγ0 � μδ0�x1 � λγ1 � μδ1� � � � �xs � λγs � μδs�

where λ�μ � Rr�1, λ�μ �� 0. This is a contradiction since the points �γ0�γ1� � � � �γs� and �δ0�δ1� � � � �δs�
were assumed to be different.

It remains to prove that every point is contained in a r-dimensional subspace. The number of points in
PHG�Rn�1

R � is qn
�n�1

1

�
q; the number of points in an r-dimensional subspace is qr

�r�1
1

�
q and the number

of points in PHG�Rs�1
r�1� is qs�r�1�

�s�1
1

�
qr�1 . Now we have

qr
�
r�1

1

�
q

qs�r�1�

�
s�1

1

�
qr�1

� qr qr�1�1
q�1


qs�r�1�q
�s�1��r�1��1

qr�1�1
� qn qn�1�1

q�1
� qn

�
n�1

1

�
q
�

which means that the r-dimensional subspaces cover all points of PHG�Rn�1
R �.

Secondly, consider the case where R is the ring of σ dual numbers over the finite field �q , i.e. R �
Rσ � �q � t�q . Denote by R� the ring of σ�-dual numbers �qr�1 � t�qr�1 , where σ���qr�1 � σ. Similarly,

let R�� be the ring of σ��-dual numbers �qn�1 � t�qn�1 , where σ����qn�1 � σ�. The ring R is a subring of R�

which in turn is a subring of R��. As above, R�s�1
R and Rn�1

R and R��R are isomorphic as (right) submodules
over R.

Consider an arbitrary nontorsion vector �γ0�γ1� � � � �γs� � RR�s�1. Fix a component which is a unit, γ0
say, and consider the system of linear equations (1). The set of solutions of (1) is a free rank 1 submodule
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of R�s�1
R which can be viewed as a free rank r submodule of Rn�1

R . Further the proof is completed as for
Galois rings. �

Remark 3.1. Assume r� 1 divides n� 1. We can prove the existence of a spread of r-dimensional
subspaces using the nested structure of the projective Hjelmslev geometries.

Let H0 be a fixed subspace in PHG�Rk
R� with dimH0 � r. Define the set � of subsets of P by

�� �H � �X �;X �
� H0�H is a subspace�dimH � s�H � �H0�	�

The sets H � �X � are either disjoint or coincide. Define an incidence relation ����L by

�H � �X ��� l �� l� �H � �X �� �� /0�
Let L�H0� be the set of all lines in L incident with at least one point in�. For the lines l1� l2 � L�H0�

we write l1 � l2 if they are incident (under �) with the same elements of �. The relation � is an
equivalence relation under which L�H0� splits into nonintersecting classes of equivalent lines. Denote
by � a set of representatives of the equivalence classes of lines in L�H0�. The set of representatives �
contains only two types of lines: lines l with l �

� H0 and lines l with l ��
� H0.

It is known from [8] that the incidence structure ������ ����� can be embedded isomorphically into
the projective plane PG�k�1�q�. Hence we can construct a spread in PHG�Rn�1

R � in the following way.
We start with a spread in the factor geometry PG�n�q�. This spread defines a set of neighbourhoodclasses
of projective r-subspaces. Each one of these classes is isomorphic in the sense of the above mentioned
result to a projective geometry PG�n�q� with an �n� r� 1�-dimensional space deleted. Now it suffices
to take a spread which contains a spread of the deleted �n� r�1�-dimensional subspace.

A spread with this property can be constructed, for instance, by repeating the construction from the
proof of Theorem 3.1. The exceptional �n�r�1�-dimensional space can be taken as the space consisting
of all points having zeros in the first r�1 positions.

Our result can be generalized to projective Hjelmslev geometries over arbitrary chain rings R.

Theorem 3.2. Let R be a chain ring with �R�� qm, R� radR�� �q . The n-dimensional projective Hjelmslev
geometry PHG�Rn�1

R � has a spread of r-dimensional projective Hjelmslev subspaces if and only if r�1
divides n�1.

Proof. We give only a sketch of a proof. For the sake of convenience, we set N � radR � θR. As before,
the "only if"-part is straightforward. The proof of the "if"-part uses induction by m and n. So far, we have
proved this result for m � 1 and 2. It is also trivial for n � r for every m.

Consider the factor geometry having as points the �m�1�-neighbour classes on points. It is isomorphic
to PHG��Rk�θm�iRk�R�Nm�i (cf. [8]). By the induction hypothesis, it has a spread of r-dimensional
projective Hjelmslev subspaces. The preimage of these subspaces are of the form �Δ�m�1 where Δ is an
r-dimensional Hjelmslev subspace in PHG�Rn�1

R �. Here �Δ� j is the class of all r-dimensional Hjelmslev
subspaces that are j-th neighbours to Δ. Now �Δ� j can be imbedded isomorphically in PHG��R�N�n�1

R�N�
��

PG�n�q� (cf. [8]) where the missing part is an �n� r� 1�-dimensional subspace, H say. Since r� 1
divides n� r � �n�1�� �r�1�, we have that H contains a spread by the induction hypothesis. Now it
is enough to take a spread which contains as a subset the spread of the missing �n� r�1�-dimensional
subspace. �

4. PROJECTIVE HJELMSLEV PLANES FROM SPREADS

Spreads in Π� PHG�Rn�1
R � can be used to construct projective Hjelmslev planes. Set

n � 2t�1� r � t�1� s � 1�

By Theorem 3.1 , there exists a spread S of r-dimensional subspaces of Π such that its image under the
canonical map π� π�1� is a (multiple of a) spread in PG�n�q�.
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The geometry Π can be imbedded in �Π � PHG�Rn�2
R �, e.g. by taking by taking as points of Π all

points of �Π with first coordinate 0. Hence Π can be considered as a hyperplane of �Π. Denote by �Π� the
set of all neighbour hyperpalnes to Π in �Π. Define a new incidence structure as follows:

Take as points:

(1) all points of �Π that are not incident with a point of �Π�. These are called proper points and their
number is:

qn�1 qn�2�1
q�1

�qn�1 qn�1�1
q�1

� q2�n�1� � q4t �

(2) all subspaces of the form
�S�P��H�

where S is an r-dimensional subspace from S , P is a point from �Π� �Π� and H is a hyperplane of �Π
contained in the neighbour class �Π�. These are called ideal points. The number of choices for the
point P is q4t � q2�n�1�. The number of choices for S � S is

�S ��
qn qn�1

�1
q�1

qr qr�1
�1

q�1

�
q2t�1�q2t �1�
qt�1�qt �1�

� qt�qt �1��

The number of choices for H � �Π� is qn�1 � q2t . For all points Q in �S�P�� �Π�, we have �S�Q��H �
�S�P��H i.e. we get the same point in the new incidence structure. Hence for

qr�1 qr�2�1
q�1

�qr�1 qr�1�1
q�1

� q2�r�1� � q2t �

different points P we get the same �r�1�-dimensional subspace �S�P�.

As lines we take:

(1) all subspaces of the form �S�P�, where S � S and P is a point from �Π� �Π�, i.e. these are all �r�1�-
dimensional subspaces through r-dimensional subspaces in the spread;

(2) all hyperplanes H from �Π�.

For the proper points neighbourhood is inherited from �Π. For the ideal points, we have that

�S��P��H �

�
� �S���P��H ��

if and only if S� and S�� are neighbours in Π. By definition, two lines �1 and �2 are neighbours if for every
point X � �1 there exists a point Y � �2 with X �

� Y , and, conversely, for every Y � �2 there exists an
X � �1 with Y �

� X .

Lemma 4.1. Let S be an r-dimensional subspace in Π and let P�Q be points from �Π� �Π� with P �
� Q.

Then �S�P�� �Π� � �S�Q�� �Π�.

Proof. Assume there exists a point X � �Π� with X � �S�Q�, but X �� �S�P�. The lines PY and QY are
neighbours. Therefore �PY �QY �� q. The common points of both lines must be neighbours to Y . Hence
the q common points must lie in �Π�., contradiction to the initial assumption. �

Lemma 4.2. The number of hyperplanes from �Π� through a fixed r-dimensional flat S � S (S�Π) is qt .

Proof. Any r-dimensional flat in an �n�1�-dimensional space can be given by a set of �n�1��r � t�1
equations. Without loss of generality, let S be given by x0 � x1 � � � �� xt � 0 and letΠ be the hyperplane
defined by x0 � 0. An arbitrary hyperplane in �Π� containing S satisfies an equation of the form:

(2) x0 �θ�r1x1 � r2x2 � � � �� rtxt� � 0�

We have θr � θs if and only if r�s � radR, therefore (2) describes all hyperplanes in �Π� through S when
�r1�r2� � � � �rt� runs Γt , where Γ is a set of elements no two of which are congruent modulo radR. hence
there are exactly q possibilities for each ri and the number of hyperplanes in �Π� through S is qt . �
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According to Lemma 4.1 the number of the essentially different choices of P is

qn�2
�1

q�1 � qn�1
�1

q�1

qr�2
�1

q�1 � qr�1
�1

q�1

�
qn�1

qr�1 � qt �

The number of choices for S is qt�qt �1� and the number of hyperplanes H from �Π� is q2t . On the other
hand, by Lemma 4.2, we get the same intersection for qt different hyperplanes in �Π�. Each ideal point
of the second type can be obtained for qt different subspaces �S�P�. therefore the number of all points of
the second type is

qt 
qt�qt �1� 
q2t

qt 
qt � q3t �q2t �

Now it is a straightforward check that the defined incidence structure is indeed a projective Hjelmslev
plane.

5. OPEN PROBLEMS

(1) Is it possible to exist a spread whose image under the cannonical map π is not a (multiple of a) spread
in PG�k�1�q�?

(2) Taking different spreads in PHG�Rn�1
R � we can construct nonisomorphic projective Hjelmslev planes.

Under what conditions do we obtain non-Desarguesian planes?
(3) In which case do we obtain coordinate planes? Can we determine the underlying ring from the

spread?
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