
Research
SCIENTIFIC

VOLUME 6
2008

BLAGOEVGRAD, BULGARIA

ELECTRONIC
ISSUE

ISSN 1312-7535

 1

Some applications of dynamic structures

Mariya Slavcheva Palahanova
South-West University “Neofit Rilski”

Blagoevgrad

Abstract
The way on presenting in the computer memory the large numbers with unlimited

precision through linearly dynamic structures is described. The algorithms of the main
arithmetical operations are viewed. The passage from the arithmetic of the unlimited precision
to the systems for the computer algebra is blocked out.

Basic problems of the numbers with limited precision
By programming mathematical or real practical problems the most often used quantities

are real and integer. In the programming languages, each number is represented with fixed
number of bytes. For example, the area of the possible whole values depends of the size of the
word in the concrete computer. The binary representation of the real numbers is limited by
three factors: limited volume of the memory; the area of the real values is nonlinear and
uncountable ; the present numbers are allocated irregularly. We save the real numbers in 4, 8
or 10 bytes the most often. When the results from the calculations are very large (or little)
numbers, this is related with some disadvantages, because limits the number of the digits.

The only considerations the numbers are being represented in the computer in this way
are the speed at work and the present operative memory. The accuracy is a determinant factor
in some spheres on the human’s cognition but the speed on the calculations is not. In a
number of mathematical problems in the realization of algorithms for precisely calculations
with numbers and polynomials the standard types of data proves insufficient in the
programming languages.

The basic characteristics of the numbers are a record and a meaning. The dependence
between the record of the number and his meaning is given in the following description :

1. Whole numbers
 Let b be natural number greater from 1. Then each natural number N can in only way

be represented in the form N=a0*b0+a1*b1+a2*b2+…+ak*bk , where a0, a1, a2,..., ak≠0 are
integers between 0 and b-1. Each natural number N can in only way be written in base-b
numeral system N=)(01kk ...aaa b− , where a0, a1, a2,..., ak are digits by base b. The number N
represents themselves by the list (a0 a1 a2... ak). If the radix b is a power of 10, it can be
passed from the common decimal record to a representation by a list quickly and easily. For
determination on the sign of the whole number right, additional or inverse code is used. In the
right code the whole numbers are identified with the sign “-“ in front of the digits of the
number. The inverse code and the additional code are using themselves for facilitation of the
operations with negative numbers in the personal computers. It existes a short form of a
recording on integers in which the digits can be as positives, so as negatives. Each from them
consists in the interval аi∈[-b/2,b/2) , where b>2 is the base of the numeral system. The best
celebrated system is considered the base-3 symmetric system with base 3 and digits -1, 0, 1.
The advantage of such systems is simply performance of operations with negative numbers.
They can use themselves for representation on real numbers also.

2. Real numbers
Let the real number (…a3a2a1a0.a-1a-2a-3…)=…+ a3*b3+ a2*b2+ a1*b1+ a0*b0+ a-1*b-1+a-

2*b-2+a-3*b-3+… is given. Such record of a real number is called a record with a fixing point,
e. g. the position of the decimal point is known always. So a record with a floating point

 2

uses themselves for the real numbers, for what the number with precision p(the number of
digits in the significant) with a floating point on base b with remainder q is called the pair of
numbers (e,f), where (e,f)= f* be-q. Here e is a whole number (exponent) and f is a fraction
number with sign (significant). We suspect, that | f|<1, - bp< bp*f< bp

In all standard arithmetics in the programming languages the number of the digits of
the integers and real numbers is in advance determined. Therefore the numbers represents
themselves with a limited accuracy. When the number of the digits is not limited in advance,
but it is possible to be limited only from the size of the computer memory, we talk of a
unlimited precision. Because the computational memory is a linear structure, and the numbers
can be represented with a list, their saving is comfortably in type of related structure- a linear
list.

Each structure of data can be presented on an abstract level as a pair <D,R>, where D -
an extreme set of elements, even structural data, R - a set from relations, their properties
determine the different types of structures of a abstract level. A structure of data is called
linear, when the set R consists of one relation “linear arranged”, i.e. each element without her
first and her final has only one anterior and one following element. In limiting the number of
the operations for access different special cases of a list get themselves: a stack, a queue, a
deque, a cyclic queue. They realize themselves in the memory in static type or in dynamic
type. The dynamic structures of data change their size during execution of the program and
they realize themselves with the help of the mechanism for dynamic distribute of a memory.
The number of the elements of the dynamic structure is not defined in advance and can use
themselves for representing numbers with unlimited precision. For example, the whole
number N= (b)01kk ...aaa − saves itself with the following singly-linked linear list:

Algorithms for the fundamental arithmetical operations over whole numbers with
unlimited precision [1]:

Addition and subtraction on two whole numbers)(n21 ...aaa b and)(n21 ...ccc b . The
algorithm for getting of their sum)(...210 bndddd is the following :

1.j=n и k=0
2.dj=(aj±cj+k) mod b , k=⎣(aj±cj+k) /b⎦
3. Cycle by an index j. j=j-1. If j>0, return in 2. , otherwise appropriate d0=k and

complete the algorithm.
Multiplication on two whole numbers)(n21 ...aaa b and)(m21 ...ccc b . The following

algorithm is leadding their product)(...21 bmnddd + :
1. Appropriate dm+1=0, dm+2=0,…,dm+n =0 and j=m
2. If cj=0, then dj=0 and go in 6.
3. i=n, k=0
4. t=ai*cj+di+j+k, di+j=t mod b, k=⎣t/b⎦
5. Cycle by an index i. i=i-1. If i>0, then return in 4. , otherwise dj=k.
6. Cycle by an index j. j=j-1. If j>0, then return in 2. , otherwise the implementation of

the algorithm carries out itself.
Division on two whole numbers)(mn21 ...aaa b+ and)(n21 ...ccc b . The quotient)(m10 ...qqq b

and the residual)(n21 ...rrr b are got with the following eight steps:

ak ak-1 a0 . . .

 3

1. Beginning appropriation d=⎣b/(c1+1)⎦ ,)(mn210 ...aaaa b+ =)(mn21 ...aaa b+ *d
2. j=0
3. Calculating a multiplier s. If aj=c1, then s=b-1, otherwise s= ⎣(aj*b+aj+1)/c1⎦ . If the

inequality is realized c2*s>(aj*b+aj+1-s*c1)*b+aj+2 , then s=s-1 and we repeat the check-up.
We appropriate q=s after the end of all controls.

4.)(n1jj ...aaa bj ++ =)(n1jj ...aaa bj ++ -)(n21 ...ccc b *q
5. qj=q . If the result on the previous step has been negative, then go to 6. , otherwise go

to 7.
6. qj= qj-1 and)(n21 ...cc0c b +)(n1jj ...aaa bj ++
7. Cycle by j , j=j+1. If j≤m, then 3.
8.)(n10 ...qqq b is the searched quotient, the residual is got as a division on)(m1m ...aa bn++

on d .
Usually these algorithms replay the customary acts at manual addition, subtraction,

multiplication and division on whole numbers.
The data structure, singly-linked linear list can be realized by arbitrary programming

language. A component of the data describes itself with a structure, the her field consists of
own data and pointers with which the elements connect a one with other. The positive integer
is described by the algorithmic language Pascal with the following structure:

type pointer= ∧ list;
 list = record
 n:integer;
 p:pointer;
 end;
 In C++ the element of singly-linked list can defined in this way:
struct link{
 int n;
 link *p;
 };
If the number of components is in advance known can be used a static list – a set from

data that arrange themselves in the list consecutively and continuously. In C++ a static list can
present with the structure:

struct list{
 int k;
 int elem[i];
 };
Here k defines the number of the elements in the list, if k=0, then the list is empty, if

k=i, then the list is full.
Arrays, recursive structures or recursive classes can be used for the realization of linear

lists in C++ . In C++ as object oriented language exist libraries of classes, realizing different
structures of data, including and lists. [2]

Linear lists in the systems for computer algebra

If the list (p q) corresponds to the rational number
q

p , where р and q≠0 are whole

numbers, then the described above way is in effect for the rational numbers. If we
supplemente this presentation with corresponding procedures for determining a greatest
common divisor of two whole numbers with unlimited precision, for reducing to a common

 4

denominator of two rational numbers, addition and multiplication on rational numbers, then
we’ll get a rational arithmetic.

The representation with a list can be used for polynomials independently from their type
and their power. For example, the polynomial ai*x 1i +a2*x 2i +…+an*x in , where i1>i2>…>in
are represented with a list from the form (xa1i1a2i2…anin). Each coefficient ai can be a
polynomial of another variable or a number with a unlimited precision. The drafted
representation for the polynomials can be used for whatever algebraic expressions
analogously. [1]

Some translators of Lisp have a built in arithmetic with integer with unlimited precision.
Because lists can frame themselves most easily with the specialization language Lisp, for the
purpose, a range of systems for computer algebra are written on Lisp or are complemented
with the needed resources for a work with lists.

Reference:
[1] Акритас А. ,Основы компьютерной алгебры с приложениями. ,М.: Мир, 1994.
[2] Наков П. , Добриков П. Програмиране=++Алгоритми , София, 2005 .
[3] Абелъсон Х. , Сасман Дж. Структура и интерпретация компьютерных
программ , Добросвет 2006
[4] Смит Т.М. , Програмиране на PASCAL - приципи и методи , 1996
[5] Harbour Jonathan S. , Game programming all in one , Boston, MA 02210,
http://www.courseptr.com

