
An efficient method for minimizing a strictly convex
separable function subject to convex separable

inequality constraint and box constraints

Stefan M. Stefanov

Department of Informatics, Neofit Rilski South-Western University, 2700
Blagoevgrad, BULGARIA, e-mail: stefm@aix.swu.bg

Abstract

A minimization problem with strictly convex separable objective function sub-
ject to a convex separable inequality constraint of the form “less than or equal
to” and bounds on the variables is considered. Necessary and sufficient condition is
proved for a feasible solution to be an optimal solution to this problem. An iterative
algorithm of polynomial complexity for solving such problems is suggested and its
convergence is proved. Modifications of this algorithm are proposed in connection
with some extensions of the considered problem as well as in order to avoid some
computational difficulties. Examples of important convex functions for the problem
under consideration and computational results are presented.

Key words. Convex programmimg, separable programming, singly constrained pro-
gram, algorithms, computational complexity.

2000 AMS Subject Classification. 90C25, 65K05, 49M37.

1 Introduction

Consider the convex program
(C)

min c(x) =
∑
j∈J

cj(xj) (1)

subject to ∑
j∈J

dj(xj) ≤ α (2)

aj ≤ xj ≤ bj, j ∈ J, (3)

where cj(xj) are twice differentiable strictly convex functions, and dj(xj) are twice dif-
ferentiable convex functions, defined on the open convex sets Xj, j ∈ J , respectively,
d′j(xj) > 0 for every j ∈ J , x = (xj)j∈J , and J ≡ {1, ..., n}.

The feasible region X (2) – (3) is a convex set because it is an intersection of the
convex set (2) and the box (3) of dimension |J | = n.

Since the derivative of a convex differentiable function is a monotone nondecreasing
function, then condition d′j(xj) > 0 with aj ≤ xj ≤ bj, j ∈ J , is satisfied if and only if
d′j(aj) > 0, when aj > −∞, or if and only if limt→−∞ d′j(t) > 0, when aj = −∞. Set
d′j(bj) = limt→∞ d′j(t) when bj = +∞.

Problem (C) and related to it arise in many cases, for example, in production planning
and scheduling [3], in allocation of resources [3, 37], in allocation of effort resources among
competing activities [17], in the theory of search [7], in subgradient optimization [13], in
facility location problems [25, 26], in the implementation of projection methods when the
feasible region is of the form (2) – (3) [25, 26, 29], etc. That is why we need efficient
algorithms for solving such problems.

Problems like (C) are subject of intensive study. Related problems and methods for
solving them are considered in [1] – [37], etc. The solution of knapsack problems with
arbitrary convex or concave objective functions is studied in [3, 17, 21, 37], etc. Quadratic
knapsack problems and related to them are studied in [5, 23, 24], etc. An indefinite version
of these problems is considered in [35], and algorithms for the case of convex quadratic
objective function were proposed in [5, 10, 14], etc. Algorithms for bound constrained
quadratic programming problems are proposed in [9, 20, 22]. Algorithms for the least
distance problem are suggested, for example, in [1, 36]. A polynomial time algorithm for
the resource allocation problem with a convex objective function and nonnegative integer
variables is suggested in [16]. Algorithms for solving a quadratic program with (strictly)
convex objective function of the type c(x) = 1

2

∑
j∈J (xj−yj)

2 and constraints of the form
(2) – (3) are suggested in [25, 28]. This problem itself is equivalent to projecting a point
y = (y1, . . . , yn) onto the convex set (2) – (3) and has always a unique solution when the
feasible region is nonempty. Such algorithms are very useful for methods using projection
onto region of the considered type, for example, gradient projection methods, methods
of projection stochastic quasigradients [25], etc. Algorithms for finding a projection are
proposed, e.g., in [19, 25, 29], etc., and projected Newton-type methods are suggested in
[2, 12].

This paper is devoted to development of new efficient algorithm for solving Problem
(C). The paper is organized as follows. In Section 2, a necessary and sufficient condition
(characterization theorem) for a feasible solution to be an optimal solution to Problem (C)
is proved (Theorem 1). In Section 3, an iterative algorithm of polynomial complexity for
solving Problem (C), based on Theorem 1, is proposed, and convergence of this algorithm
is proved as Theorem 2. The approach suggested in this paper can be extended to the
case when d′j(aj) = 0 and/or d′j(bj) = 0, or d′j(xj) ≡ 0 (d′j(xj) ≡ dj = 0 in the linear case)
for some indices j. These topics as well as computational aspects of implementation of
the algorithm are considered in Section 4. Section 5 contains examples of some strictly
convex functions cj(xj) and convex functions dj(xj) which are involved in Problem (C),
and some computational results.

This paper is a continuation and generalization of the approach suggested in author’s
previously published papers on the topic.

2 Main result. Characterization theorems

Suppose that the following assumptions are satisfied.

2

(I) aj ≤ bj for all j ∈ J . If ak = bk for some k ∈ J , then the value xk := ak = bk is
determined a priori.

(II)
∑

j∈J dj(aj) ≤ α. Otherwise the constraints (2) and (3) are inconsistent and X = ∅.
In addition to this assumption, we suppose that α ≤ ∑

j∈J dj(bj) in some cases which are
specified below.

(III) (Slater’s constraint qualification) There exists a point x = (x1, . . . , xn) ∈ X such
that

∑
j∈J dj(xj) < α.

Let h≤j , j ∈ J , be the value of xj for which c′j(xj) = 0. If a finite value with this
property does not exist, since c′j(xj) is a monotone increasing function (cj(xj) is strictly

convex), we adopt h≤j = −∞.
The Lagrangian for Problem (C) is

L(x,u,v, λ) =
∑
j∈J

cj(xj) + λ

∑
j∈J

dj(xj)− α

 +
∑
j∈J

uj(aj − xj) +
∑
j∈J

vj(xj − bj), (4)

where λ ∈ IR1
+;u,v ∈ IRn

+, and IRn
+ consists of all vectors with n real nonnegative compo-

nents.
The Karush-Kuhn-Tucker (KKT) conditions for the minimum solution x∗ = (x∗j)j∈J

to Problem (C) are
c′j(x

∗
j) + λd′j(x

∗
j)− uj + vj = 0, j ∈ J, (5)

uj(aj − x∗j) = 0, j ∈ J, (6)

vj(x
∗
j − bj) = 0, j ∈ J, (7)

λ

∑
j∈J

dj(x
∗
j)− α

 = 0, λ ∈ IR1
+, (8)

∑
j∈J

dj(x
∗
j) ≤ α, (9) ≡ (2)

aj ≤ x∗j ≤ bj, j ∈ J, (10) ≡ (3)

uj ∈ IR1
+, vj ∈ IR1

+, j ∈ J, (11)

where λ, uj, vj, j ∈ J , are the Lagrange multipliers associated with the constraints (2),
aj ≤ xj, xj ≤ bj, j ∈ J , respectively. If aj = −∞ or bj = +∞ for some j ∈ J , we
do not consider the corresponding condition (6) ((7), respectively) and multiplier uj (vj,
respectively).

Since cj(xj), j ∈ J , are strictly convex differentiable functions and dj(xj), j ∈ J , are
convex differentiable functions in one variable, then c′j(xj) and d′j(xj) satisfy

[c′j(x
1
j)− c′j(x

2
j)](x

1
j − x2

j) > 0 ∀ x1
j 6= x2

j , j ∈ J, (12)

[d′j(x
1
j)− d′j(x

2
j)](x

1
j − x2

j) ≥ 0 ∀ x1
j , x

2
j , j ∈ J, (13)

respectively.
Since λ ≥ 0, uj ≥ 0, vj ≥ 0, j ∈ J , and since the complementary conditions (6), (7),

(8) must be satisfied, in order to find x∗j , j ∈ J , from system (5) – (11), we have to
consider all possible cases for λ, uj, vj: all λ, uj, vj equal to 0; all λ, uj, vj different from 0;

3

some of them equal to 0 and some of them different from 0. The number of these cases is
2|J |+1 = 22n+1, where 2n + 1 is the number of all λ, uj, vj, j ∈ J , and |J | = n. Obviously
this is an enormous number of cases, especially for large-scale problems. For example,
when n = 1500, we have to consider 23001 ≈ 10900 cases. (Only for comparison, recall that
astrophysicists have determined that the age of the Universe is approximately 15 billion
years, that is, approximately “only” 1018 seconds.) Moreover, in each case, we have to
solve a large-scale system of (nonlinear) equations in x∗j , λ, uj, vj, j ∈ J . Therefore, the
direct application of the KKT theorem, using explicit enumeration of all possible cases,
for solving large-scale problems of the considered form would not give a result and we
need efficient methods to solve the problem under consideration.

The following Theorem 1 gives necessary and sufficient condition (characterization) of
the optimal solution to Problem (C). Its proof is based on the KKT theorem. As we will
see in Section 5, by using Theorem 1 we can solve Problem (C) with n = 1500 variables
for about 0.001 seconds on a personal computer.

Theorem 1 (Characterization of the optimal solution to Problem (C)) A feasible solution
x∗ = (x∗j)j∈J ∈ X is an optimal solution to Problem (C) if and only if there exists a

λ ∈ IR1
+ such that

x∗j = aj, j ∈ Jλ
a

def
=

{
j ∈ J : λ ≥ −

c′j(aj)

d′j(aj)

}
(14)

x∗j = bj, j ∈ Jλ
b

def
=

{
j ∈ J : λ ≤ −

c′j(bj)

d′j(bj)

}
(15)

x∗j : λd′j(x
∗
j) = −c′j(x

∗
j), j ∈ Jλ def

=

{
j ∈ J : −

c′j(bj)

d′j(bj)
< λ < −

c′j(aj)

d′j(aj)

}
. (16)

Proof. Necessity. Let x∗ = (x∗j)j∈J be an optimal solution to Problem (C). Then there
exist constants λ, uj, vj, j ∈ J , such that KKT conditions (5) – (11) are satisfied. Consider
both possible cases for λ.

1) Let λ > 0. Then system (5) – (11) becomes (5), (6), (7), (10), (11) and∑
j∈J

dj(x
∗
j) = α, (17)

that is, the inequality constraint (2) is satisfied as an equality for x∗j , j ∈ J , in this case.
a) If x∗j = aj, then uj ≥ 0, vj = 0 according to (7) and (11). Therefore, (5) implies

c′j(x
∗
j) = uj − λd′j(x

∗
j) ≥ −λd′j(x

∗
j). Using that d′j(x

∗
j) > 0, we get

λ ≥ −
c′j(x

∗
j)

d′j(x
∗
j)
≡ −

c′j(aj)

d′j(aj)
.

b) If x∗j = bj, then uj = 0, vj ≥ 0 according to (6) and (11). Therefore, (5) implies
c′j(x

∗
j) = −vj − λd′j(x

∗
j) ≤ −λd′j(x

∗
j). Hence

λ ≤ −
c′j(x

∗
j)

d′j(x
∗
j)
≡ −

c′j(bj)

d′j(bj)
.

4

c) If aj < x∗j < bj, then uj = vj = 0 according to (6) and (7). Therefore, (5) implies
−c′j(x

∗
j) = λd′j(x

∗
j). Since d′j(x

∗
j) > 0, j ∈ J, λ > 0 by the assumptions, then −c′j(x

∗
j) > 0.

Using that bj > x∗j > aj, from (12), (13) it follows that c′j(bj) > c′j(x
∗
j) > c′j(aj), d′j(bj) ≥

d′j(x
∗
j) ≥ d′j(aj), j ∈ J . Using that −c′j(x

∗
j) > 0, d′j(x

∗
j) > 0, λ = − c′j(x

∗
j)

d′j(x
∗
j)

, 1
d′j(xj)

is a

monotone nonincreasing function as a reciprocal of the derivative of the convex function
dj(xj) with d′j(xj) > 0, we obtain

λ = −
c′j(x

∗
j)

d′j(x
∗
j)
≤ −

c′j(x
∗
j)

d′j(aj)
< −

c′j(aj)

d′j(aj)
, λ = −

c′j(x
∗
j)

d′j(x
∗
j)
≥ −

c′j(x
∗
j)

d′j(bj)
> −

c′j(bj)

d′j(bj)
,

that is,

−
c′j(bj)

d′j(bj)
< λ < −

c′j(aj)

d′j(aj)
. (18)

2) Let λ = 0. Then system (5) – (11) becomes: c′j(x
∗
j)− uj + vj = 0, j ∈ J , and (6),

(7), (9), (10), (11).
a) If x∗j = aj, then uj ≥ 0, vj = 0. Therefore c′j(aj) ≡ c′j(x

∗
j) = uj ≥ 0. Multiplying

both sides of this inequality by − 1
d′j(aj)

(< 0 by the assumption), we obtain

−
c′j(aj)

d′j(aj)
≤ 0 ≡ λ.

b) If x∗j = bj, then uj = 0, vj ≥ 0. Therefore c′j(bj) ≡ c′j(x
∗
j) = −vj ≤ 0. Multiplying

this inequality by − 1
d′j(bj)

< 0, we get

−
c′j(bj)

d′j(bj)
≥ 0 ≡ λ.

c) If aj < x∗j < bj, then uj = vj = 0. Therefore c′j(x
∗
j) = 0, that is, x∗j = h≤j . Since

bj > x∗j > aj, j ∈ J , by the assumption, from (12) it follows that c′j(bj) > c′j(x
∗
j) = 0,

0 = c′j(x
∗
j) > c′j(aj). Multiplying the first inequality by − 1

d′j(bj)
< 0 and the second

inequality by − 1
d′j(aj)

< 0, we obtain − c′j(bj)

d′j(bj)
< 0 ≡ λ, λ ≡ 0 < − c′j(aj)

d′j(aj)
, that is,

−
c′j(bj)

d′j(bj)
< λ < −

c′j(aj)

d′j(aj)
.

In order to describe cases a), b), c) for both 1) and 2), it is convenient to introduce
the index sets Jλ

a , Jλ
b , Jλ defined by (14), (15), (16), respectively. It is obvious that

Jλ
a ∪ Jλ

b ∪ Jλ = J . The “necessity” part of Theorem 1 is proved.

Sufficiency. Conversely, let x∗ ∈ X and components of x∗ satisfy (14), (15), (16),
where λ ≥ 0.

1) Let λ > 0. Then c′j(x
∗
j) < 0, j ∈ Jλ, according to (16) and d′j(x

∗
j) > 0. Set:

5

λ = −
c′j(x

∗
j)

d′j(x
∗
j)

= λ(x∗) (> 0), obtained from
∑

j∈Jλ
a

dj(aj) +
∑

j∈Jλ
b

dj(bj) +
∑

j∈Jλ

dj(x
∗
j) = α;

uj = vj = 0 for j ∈ Jλ;

uj = c′j(aj) + λd′j(aj) (≥ 0 according to the definition of Jλ
a), vj = 0 for j ∈ Jλ

a ;

uj = 0, vj = −c′j(bj)− λd′j(bj) (≥ 0 according to the definition of Jλ
b) for j ∈ Jλ

b .

By using these expressions, it is easy to check that conditions (5), (6), (7), (8), (11) are
satisfied. Conditions (9), (10) are also satisfied according to the assumption that x∗ ∈ X.

2) Let λ = 0. Then c′j(x
∗
j) = 0, j ∈ Jλ=0, in accordance with (16). Since d′j(xj) > 0

for each xj then c′j(bj) > 0, c′j(aj) < 0, j ∈ J0 ≡
{
j ∈ J : −

c′j(bj)

d′j(bj)
< 0 < −

c′j(aj)

d′j(aj)

}
.

Therefore there exists an x∗j = h≤j ∈ (aj, bj) such that c′j(x
∗
j) = 0 according to the Darboux

theorem. Set:

λ = −
c′j(x

∗
j)

d′j(x
∗
j)

(= 0); uj = vj = 0 for j ∈ Jλ=0;

uj = c′j(aj) + λd′j(aj) = c′j(aj) (≥ 0), vj = 0 for j ∈ Jλ=0
a ;

uj = 0, vj = −c′j(bj)− λd′j(bj) = −c′j(bj) (≥ 0) for j ∈ Jλ=0
b .

Clearly, conditions (5), (6), (7), (11) are satisfied; conditions (9), (10) are also satisfied
according to the assumption x∗ ∈ X, and condition (8) obviously is satisfied for λ = 0.

In both cases 1), 2) of the “sufficiency” part, x∗j , λ, uj, vj, j ∈ J , satisfy KKT conditions
(5) – (11) which are necessary and sufficient conditions for a feasible solution to be an
optimal solution to a convex minimization problem. Therefore x∗ is an optimal solution
to Problem (C). Since cj(xj), j ∈ J , are strictly convex functions, this optimal solution
is unique. �

In view of the discussion above, the importance of Theorem 1 consists in the fact
that it describes components of the optimal solution to Problem (C) only through the
Lagrange multiplier λ associated with the inequality constraint (2).

Since we do not know the optimal value of the Lagrange multiplier λ from the state-
ment of Theorem 1, in order to obtain the optimal solution to Problem (C) (or to establish
that Problem (C) does not have an optimal solution), in Section 3 we define an iterative
algorithm with respect to the Lagrange multiplier λ and we prove convergence and discuss
computational complexity of this algorithms.

Using that d′j(xj) > 0, j ∈ J , from strict monotonicity of c′j(xj) and from aj ≤ bj, j ∈
J , it follows that ubj

def
= − c′j(bj)

d′j(bj)
< − c′j(aj)

d′j(aj)

def
= laj, j ∈ J , for the expressions by means of

which we define the index sets Jλ
a , Jλ

b , and Jλ.
The problem how to ensure a feasible solution to Problem (C) (1) – (3), which is an

assumption of Theorem 1, is also discussed in Section 3.

6

3 The Algorithm for Problem (C)

3.1 Analysis of the optimal solution to Problem (C)

Before the formal statement of the algorithm for Problem (C), we discuss some properties
of the optimal solution to this problem.

By using (14), (15) and (16) of Theorem 1, condition (8) can be written in the form

λ

 ∑
j∈Jλ

a

dj(aj) +
∑

j∈Jλ
b

dj(bj) +
∑

j∈Jλ

dj(x
∗
j)− α

 = 0, λ ≥ 0. (8′)

Since the optimal solution x∗ to Problem (C) depends on λ (Theorem 1), we consider the
components of x∗ as functions of λ for different λ ∈ IR1

+:

xj(λ) =



aj, λ ≥ −
c′j(aj)

d′j(aj)

bj, λ ≤ −
c′j(bj)

d′j(bj)

x∗j : c′j(x
∗
j) + λd′j(x

∗
j) = 0, −

c′j(bj)

d′j(bj)
≤ λ ≤ −

c′j(aj)

d′j(aj)
.

(19)

Functions xj(λ), j ∈ J , are piecewise, monotone, piecewise differentiable functions of λ

with two breakpoints at λ = − c′j(aj)

d′j(aj)
and λ = − c′j(bj)

d′j(bj)
, j ∈ J .

Let
δ(λ)

def
=

∑
j∈Jλ

a

dj(aj) +
∑

j∈Jλ
b

dj(bj) +
∑

j∈Jλ

dj(xj(λ))− α. (20)

According to (19) and uj = vj = 0, j ∈ Jλ, condition (5) becomes

c′j(xj(λ)) + λd′j(xj(λ)) = 0, j ∈ Jλ. (21)

Differentiating both sides of these expressions with respect to λ (using that c′′j (xj), d
′′
j (xj), j ∈

J , exist by assumption, x′j(λ) exist for all j ∈ Jλ because xj(λ) are defined by xj(λ) = x∗j
such that c′j(x

∗
j) + λd′j(x

∗
j) = 0 for j ∈ Jλ), we obtain

c′′j (xj(λ))x′j(λ) + d′j(xj(λ)) + λd′′j (xj(λ))x′j(λ) = 0, j ∈ Jλ. (22)

Therefore

x′j(λ) = −
d′j(xj(λ))

λd′′j (xj(λ)) + c′′j (xj(λ))
, j ∈ Jλ, (23)

and since c′′j (xj) > 0, d′′j (xj) ≥ 0, j ∈ J , as the second derivatives of strictly convex
and convex differentiable functions, respectively, d′j(xj) > 0 by assumption, λ ≥ 0, then
x′j(λ) < 0, j ∈ Jλ. (If we assume that λd′′j (xj(λ)) + c′′j (xj(λ)) = 0, then d′j(xj(λ)) = 0, j ∈
Jλ, according to (22). However, d′j(xj) > 0, j ∈ J , by the assumption, a contradiction.)
Consequently

δ′(λ) ≡
∑

j∈Jλ

d′j(xj(λ))x′j(λ) < 0 (24)

7

when Jλ 6= ∅, and δ′(λ) = 0 when Jλ = ∅. Hence, δ(λ) is a monotone nonincreasing
function of λ ∈ IR1

+, and maxλ≥0 δ(λ) is attained at the minimum admissible value of λ,
that is, at λ = 0.

Case 1. If δ(0) > 0, in order that (8′) and (9) ≡ (2) be satisfied, there exists some
λ∗ > 0 such that δ(λ∗) = 0, that is, ∑

j∈J

dj(x
∗
j) = α, (25)

which means that the inequality constraint (2) is satisfied with an equality for λ∗ in this
case.

Case 2. If δ(0) < 0 then δ(λ) < 0 for all λ ≥ 0, and the maximum of δ(λ) with λ ≥ 0 is
δ(0) = maxλ≥0 δ(λ) and it is attained at λ = 0 in this case. In order that (8′) be satisfied,
λ must be equal to 0. Therefore x∗j = h≤j , j ∈ Jλ=0, according to (16) and definition of

h≤j .
Case 3. In the special case when δ(0) = 0, the maximum value δ(0) = maxλ≥0 δ(λ)

of δ(λ) is also attained at the minimum admissible value of λ, that is, at λ = 0, because
δ(λ) is a monotone nonincreasing function in accordance with the above discussion.

As we have seen, for the optimal value of λ we have λ ≥ 0 in all possible cases, as
the KKT condition (8) requires. We have shown that in Case 1 we need an algorithm for
calculating λ∗ which satisfies the KKT conditions (5) – (11) and such that λ∗ satisfies (9)
with an equality. In order that this be satisfied, the set

X= def
= {x ∈ IRn :

∑
j∈J

dj(xj) = α, aj ≤ xj ≤ bj, j ∈ J}

must be nonempty. That is why we have required α ≤ ∑
j∈J dj(bj) in some cases in

addition to the assumption
∑

j∈J dj(aj) ≤ α (assumption (II), Section 2). We have also
used this assumption in the proof of Theorem 1, “sufficiency” part, when λ > 0.

Using equation δ(λ) = 0, where δ(λ) is defined by (20), we can determine λ as an
implicit function of x

λ = λ(x), (26)

because δ′(λ) < 0 according to (24) when Jλ 6= ∅ (it is important that δ′(λ) 6= 0). When it
is possible to obtain a closed form expression of λ, we use it in the algorithm suggested for
Problem (C). It turns out that without loss of generality, we can assume that δ′(λ) 6= 0,
that is, δ(λ) depends on λ, which means that Jλ 6= ∅ (see also the third paragraph of
Remark 2 below).

At iteration k of the implementation of the algorithm, denote by λ(k) the value of the
Lagrange multiplier associated with the constraint (2), by α(k) the right-hand side of (2),

and by J (k), Jλ(k)
a , J

λ(k)
b , Jλ(k) the current sets J, Jλ

a , Jλ
b , Jλ, respectively.

3.2 Statement of Algorithm 1 (for solving Problem (C))

According to Theorem 1 and the preliminary analysis, we can suggest the following algo-
rithm for solving Problem (C) with strictly convex differentiable functions cj(xj), j ∈ J .

8

Algorithm 1

0. (Initialization) J := {1, . . . , n}, k := 0, α(0) := α, n(0) := n, J (0) := J, Jλ
a := ∅, Jλ

b := ∅,
initialize h≤j , j ∈ J . If

∑
j∈J dj(aj) ≤ α go to 1; else go to 9.

1. Construct the sets J0
a , J0

b , J0 (for λ = 0). Calculate

δ(0) :=
∑
j∈J0

a

dj(aj) +
∑
j∈J0

b

dj(bj) +
∑
j∈J0

dj(h
≤
j)− α.

If δ(0) ≤ 0 then λ := 0, go to 8
else if δ(0) > 0 then:

if α ≤ ∑
j∈J dj(bj) then go to 2

else if α >
∑

j∈J dj(bj) go to 9 (there does not exist λ∗ > 0 such that δ(λ∗) = 0) .
2. Jλ(k) := J (k). Calculate λ(k) by using the explicit expression of λ, determined from

the equality
∑

j∈Jλ(k) dj(xj) = α(k), where xj, j ∈ Jλ(k), are given by (16). Go to 3.

3. Construct the sets Jλ(k)
a , J

λ(k)
b , Jλ(k) through (14), (15), (16) (with j ∈ J (k) instead of

j ∈ J) and find their cardinal numbers |Jλ(k)
a |, |Jλ(k)

b |, |Jλ(k)|, respectively. Go to 4.
4. Calculate

δ(λ(k)) :=
∑

j∈J
λ(k)
a

dj(aj) +
∑

j∈J
λ(k)
b

dj(bj) +
∑

j∈Jλ(k)

dj(x
∗
j)− α(k)

where x∗j , j ∈ Jλ(k), are determined from (16) with λ = λ(k). Go to 5.

5. If δ(λ(k)) = 0 or Jλ(k) = ∅ then λ := λ(k), Jλ
a := Jλ

a ∪Jλ(k)
a , Jλ

b := Jλ
b ∪J

λ(k)
b , Jλ := Jλ(k),

go to 8
else if δ(λ(k)) > 0 go to 6
else if δ(λ(k)) < 0 go to 7.

6. x∗j := aj for j ∈ Jλ(k)
a , α(k+1) := α(k) −∑

j∈J
λ(k)
a

dj(aj), J (k+1) := J (k) \ Jλ(k)
a ,

n(k+1) := n(k) − |Jλ(k)
a |, Jλ

a := Jλ
a ∪ Jλ(k)

a , k := k + 1. Go to 2.

7. x∗j := bj for j ∈ J
λ(k)
b , α(k+1) := α(k) −∑

j∈J
λ(k)
b

dj(bj), J (k+1) := J (k) \ J
λ(k)
b ,

n(k+1) := n(k) − |Jλ(k)
b |, Jλ

b := Jλ
b ∪ J

λ(k)
b , k := k + 1. Go to 2.

8. x∗j := aj for j ∈ Jλ
a ; x∗j := bj for j ∈ Jλ

b ; assign x∗j the value determined from (16) for
j ∈ Jλ. Go to 10.

9. Problem (C) has no optimal solution because X = ∅ or there does not exist λ > 0
satisfying Theorem 1.

10. End.

Remark 1 To avoid a possible “endless loop” in programming the algorithm, the crite-
rion of step 5 to go to step 8 at iteration k usually is not δ(λ(k)) = 0 but δ(λ(k)) ∈ [−ε, ε]
where ε > 0 is some given tolerance value up to which the equality δ(λ∗) = 0 may be
satisfied.

3.3 Convergence and computational complexity of Algorithm 1

The following Theorem 2 states convergence of Algorithm 1, that is, “convergence” of λ(k),
Jλ(k), Jλ(k)

a , J
λ(k)
b , generated by Algorithm 1, to the optimal λ, Jλ, Jλ

a , Jλ
b from Theorem

1, respectively.

9

Theorem 2 Let {λ(k)} be the sequence generated by Algorithm 1. Then
i) if δ(λ(k)) > 0 then λ(k) ≤ λ(k+1);
ii) if δ(λ(k)) < 0 then λ(k) ≥ λ(k+1).

Proof. Denote by x
(k)
j the components of x(k) = (xj)j∈J(k) at iteration k of implementation

of Algorithm 1.
Taking into consideration (24), Case 1, Case 2, Case 3 of subsection 3.1, and step 1

(sign of δ(0)) and step 2 of Algorithm 1, it follows that λ(k) ≥ 0 for every k. Since x
(k)
j are

determined from (16): λ(k)d′j(x
(k)
j) + c′j(x

(k)
j) = 0, substituted in

∑
j∈Jλ(k) dj(x

(k)
j) = α(k)

at step 2 of Algorithm 1, and since λ(k) ≥ 0, d′j(x
(k)
j) > 0, then c′j(x

(k)
j) ≤ 0, that is,

−c′j(x
(k)
j) ≥ 0.

i) Let δ(λ(k)) > 0. Using step 6 of Algorithm 1, which is performed when δ(λ(k)) > 0,
we obtain∑

j∈Jλ(k+1)

dj(x
(k)
j) ≡

∑
j∈J(k+1)

dj(x
(k)
j) =

∑
j∈J(k)\Jλ(k)

a

dj(x
(k)
j) = α(k) −

∑
j∈J

λ(k)
a

dj(x
(k)
j). (27)

Our purpose is to prove that x
(k)
j ≤ aj for j ∈ Jλ(k)

a . If we assume the contrary, that

x
(k)
j > aj for j ∈ Jλ(k)

a , then d′j(x
(k)
j) ≥ d′j(aj) according to (13), and since d′j(x

(k)
j) > 0

then
d′j(aj)

d′j(x
(k)
j)

∈ (0, 1]. According to the definition (14) of Jλ(k)
a and relation λ(k)d′j(x

(k)
j) =

−c′j(x
(k)
j), obtained from (16) at iteration No. k, we have

−
c′j(aj)

d′j(aj)
≤ λ(k) = −

c′j(x
(k)
j)

d′j(x
(k)
j)

, (28)

and therefore −c′j(aj) ≤ − c′j(x
(k)
j)d′j(aj)

d′j(x
(k)
j)

. Using that −c′j(x
(k)
j) ≥ 0, d′j(x

(k)
j) > 0 and

d′j(aj)

d′j(x
(k)
j)

∈

(0, 1] by assumption, it follows that −c′j(aj) ≤ −c′j(x
(k)
j). Hence x

(k)
j ≤ aj in accordance

with (12), a contradiction with the assumption that aj < x
(k)
j . Therefore the assumption

aj < x
(k)
j , j ∈ Jλ(k)

a , is wrong.

Using that dj(xj) is an increasing function (d′j(xj) > 0) by assumption, aj ≥ x
(k)
j , j ∈

Jλ(k)
a , and step 6 of Algorithm 1, from (27) we get∑

j∈Jλ(k+1)

dj(x
(k)
j) = α(k)−

∑
j∈J

λ(k)
a

dj(x
(k)
j) ≥ α(k)−

∑
j∈J

λ(k)
a

dj(aj) = α(k+1) =
∑

j∈Jλ(k+1)

dj(x
(k+1)
j).

Therefore there exists at least one j0 ∈ Jλ(k+1) such that dj0 (x
(k)
j0) ≥ dj0 (x

(k+1)
j0), and since

dj(xj) is an increasing function, then x
(k)
j0 ≥ x

(k+1)
j0 . Hence

λ(k) = −
c′j0(x

(k)
j0)

d′j0(x
(k)
j0)

≤ −
c′j0(x

(k+1)
j0)

d′j0(x
(k)
j0)

≤ −
c′j0(x

(k+1)
j0)

d′j0(x
(k+1)
j0)

= λ(k+1). (29)

We have used the relationship (16) between λ(k) and x
(k)
j for j ∈ Jλ(k) according to step

2 of Algorithm 1, the fact that −c′j0(xj0) is a monotone decreasing function according to

10

(12), −c′j(x
(k)
j) ≥ 0, j ∈ Jλ(k), according to (16) with λ(k) ≥ 0 and d′j(x

(k)
j) > 0, and that

1
d′j(xj)

is a monotone nonincreasing function as a reciprocal of the derivative of a convex

function dj(xj) with d′j(xj) > 0.
The proof of part ii) is omitted because it is similar to that of part i). �

Remark 2 Since we do not know the optimal value of λ which is involved in the statement
of Theorem 1, we approximate the value of λ until we obtain its optimal value at the final
iteration of algorithm performance. In order to determine the current value λ(k) of λ at
each iteration of Algorithm 1, including the initial value, we assume that Jλ(k) = J (k) at
the beginning of the corresponding iteration (step 2).

Theorem 2, definitions of Jλ
a (14), Jλ

b (15), Jλ (16) and steps 6 and 7 of Algorithm
1 allow us to assert that the values of λ(k), k = 0, 1, . . ., calculated at step 2, are such
that j ∈ Jλ(k)

a implies j ∈ Jλ(k+1)
a , j ∈ J

λ(k)
b implies j ∈ J

λ(k+1)
b , and since Jλ(k) is

reduced (steps 6 and 7 of Algorithm 1), then j ∈ Jλ(k+1) implies j ∈ Jλ(k). That is, we

have Jλ(k)
a ⊆ Jλ(k+1)

a , J
λ(k)
b ⊆ J

λ(k+1)
b , and Jλ(k) ⊇ Jλ(k+1). This means that if j belongs

to current index set Jλ(k)
a , then j belongs to the next index set Jλ(k+1)

a and so on, this j
belongs to the “optimal” index set Jλ

a according to Theorem 2 and definition (14); the same

holds true about the index sets J
λ(k)
b and Jλ

b (15). Therefore λ(k) converges to the optimal

value λ from the statement of Theorem 1, and Jλ(k)
a , J

λ(k)
b , Jλ(k) “converge” to Jλ

a , Jλ
b , Jλ,

respectively. This means that the calculation of λ, operations x∗j := aj, j ∈ Jλ(k)
a (step

6), x∗j := bj, j ∈ J
λ(k)
b (step 7), and the construction of Jλ

a , Jλ
b , Jλ are in accordance

with Theorem 1. The final sets Jλ
a , Jλ

b , Jλ are constructed at step 1 or at step 5 (when
δ(λ(k)) = 0 or Jλ(k) = ∅) of iteration k, where k is the number of the last iteration of
algorithm performance.

Since at the beginning of Algorithm 1 we have Jλ(0) := J (steps 0 and 2) and since
Jλ(k) ⊇ Jλ(k+1), then Jλ(k) 6= ∅ for all k ≤ K, where K is some nonnegative integer. If
we obtain Jλ(K) = ∅, this would mean that Jλ(K)

a ∪ J
λ(K)
b = J , that is, Problem (C) has

been already solved at iteration K, and δ(λ(K)) = const.
As we have seen in the proof of Theorem 2, Algorithm 1 guarantees that λ ≥ 0 for

Problem (C) as Theorem 1 requires. In the proof of Theorem 2 we have essentially used

that λ(k) ≥ 0 in order to deduce that −c′j(x
(k)
j) ≥ 0.

Consider the feasibility of x∗ = (x∗j)j∈J , generated by Algorithm 1.
Components x∗j = aj, j ∈ Jλ

a , and x∗j = bj, j ∈ Jλ
b , obviously satisfy (3). Let j ∈

Jλ. Suppose that x∗j < aj or x∗j > bj for j ∈ Jλ. By monotonicity of c′j(xj) and
d′j(xj) and strict convexity of cj(xj) it follows that c′j(x

∗
j) < c′j(aj), d′j(x

∗
j) ≤ d′j(aj) or

c′j(x
∗
j) > c′j(bj), d′j(x

∗
j) ≥ d′j(bj), respectively. Hence, using that d′j(.) > 0 by assumption,

−c′j(.) ≥ 0, j ∈ Jλ (see proof of Theorem 2), we get

λ ≡
−c′j(x

∗
j)

d′j(x
∗
j)

>
−c′j(aj)

d′j(x
∗
j)

≥
−c′j(aj)

d′j(aj)
or λ ≡

−c′j(x
∗
j)

d′j(x
∗
j)

<
−c′j(bj)

d′j(x
∗
j)

≤
−c′j(bj)

d′j(bj)
,

that is, j 6∈ Jλ, a contradiction. Therefore the assumption is wrong, and x∗j ∈ (aj, bj), j ∈
Jλ. Consequently, all x∗j , j ∈ J , satisfy (3).

We have proved in subsection 3.1 that if δ(0) > 0 and X 6= ∅, where X is defined by
(2) – (3), then there exists a λ∗ ≥ 0 such that δ(λ∗) = 0 (Case 1). Since at step 2 of

11

Algorithm 1 we determine λ(k) from the equality
∑

j∈Jλ(k) dj(x
(k)
j) = α(k) for each iteration

k, then (2) is satisfied with an equality in this case. Otherwise, if δ(0) < 0 then we set
λ = 0 (step 1) and we have

∑
j∈J dj(xj(0))− α ≡ δ(0) < 0, that is, (2) is also satisfied in

this case but as a strict inequality. When δ(0) = 0, since δ(λ) is monotone nonincreasing,
then (2) is also satisfied as a strict inequality.

Therefore x∗, obtained by Algorithm 1, is feasible for Problem (C), which is an as-
sumption of Theorem 1.

At each iteration, Algorithm 1 calculates the value of at least one variable (steps 6, 7,
8) and at each iteration we solve a problem of the type (C) but of less dimension (steps
2 – 7). Therefore Algorithm 1 is finite and it converges with at most n = |J | iterations,
that is, the iteration complexity of Algorithm 1 is O(n).

Step 0 (initialization and checking whether the feasible region X is empty) takes time
O(n). Step 1 (construction of sets J0

a , J0
b , J0 and calculation of δ(0)) also takes time O(n).

The calculation of x
(k)
j , j ∈ J , and λ(k) requires O(n) time (step 2). Step 3 takes O(n)

time because of the construction of index sets Jλ(k)
a , J

λ(k)
b , Jλ(k). Steps 4 also requires

O(n) time, and step 5 requires constant time. Each of steps 6, 7 and 8 takes time which
is bounded by O(n) because at these steps we assign some of xj’s the optimal value, and
since the number of all xj’s is n, then steps 6, 7 and 8 take time O(n). Hence, Algorithm
1 has O(n2) running time and it belongs to the class of strongly polynomially bounded
algorithms.

As the computational experiments show (those presented in Section 5 as well as many
other experiments), the number of iterations of the algorithm performance is not only at
most n but it is much less than n for large n. In fact, this number does not depend on
n but only on the three index sets Jλ

a , Jλ
b , Jλ defined by (14), (15), (16), respectively. In

practice, Algorithm 1 has O(n) running time.

3.4 Commentary

Some of the main characteristics of the approach suggested in this paper are the following.
Since the method uses values of the first derivatives of the objective function c(x), we

can consider it as a first-order method. Also, this method is a saddle-point method or,
more precisely, a dual variables saddle-point method because it is based on convergence
with respect to the Lagrange multiplier (dual variable) λ associated with the inequality
constraint (2).

At step 2 of Algorithm 1 we use the expression of λ(k), determined from the equality
δ(λ(k)) = 0, where x∗j are from (16), j ∈ Jλ(k) = J (k). As it has been proved, under the
assumptions we can always determine λ = λ(x∗) from δ(λ) = 0 as an implicit function
of x∗ (see (26)). For example, when functions dj(xj), j ∈ J , are linear, the explicit
expression of λ is always available. Other examples of functions for which it is possible
to obtain a closed form expression of λ are given in Section 5. Of course, there are also
other functions cj(xj), dj(xj), j ∈ J , for which the approach, suggested in this paper, is
applicable and gives good results.

When the optimal Lagrange multiplier λ∗ associated with (2) is known, then Problem
(C) (1) – (3) can be replaced by the following convex separable optimization problem

12

min

∑
j∈J

[cj(xj) + λ∗dj(xj)]− λ∗α


subject to

x ∈ A,

where
A = {x ∈ IRn : aj ≤ xj ≤ bj, j ∈ J}.

The problem dual to (C) is
max Ψ(λ)

subject to
λ ∈ IR1

+,

where

Ψ(λ) = min
x∈A

∑
j∈J

[cj(xj) + λdj(xj)]− λα

 .

Thus, using the Lagrangian duality and Theorem 1, we have replaced the multivariable
Problem (C) of x ∈ IRn by the single-variable optimization problem of the above type for
finding λ ∈ IR1

+.

4 Extensions

4.1 Theoretical aspects

In the above discussion, we have required d′j(.) > 0, j ∈ J , in constraint (2) of Problem
(C). However, if it is allowed: i) d′j(xj) ≡ 0; or ii) d′j(xj) 6≡ 0 but d′j(aj) = 0 and/or
d′j(bj) = 0 for some j ∈ J in (2), then for such indices j we cannot construct the expressions

− c′j(aj)

d′j(aj)
and/or − c′j(bj)

d′j(bj)
, by means of which we define index sets Jλ

a (14), Jλ
b (15), and Jλ

(16). In case i) we have dj(xj) =: dj = const and xj’s are not involved in (2) for such
indices j.

It turns out that we can avoid this difficulty and solve Problem (C) with d′j(xj) ≡ 0
or d′j(xj) 6≡ 0 but d′j(aj) = 0 and/or d′j(bj) = 0 for some j ∈ J .

Denote
Z0 = {j ∈ J : d′j(xj) ≡ 0},

ZA = {j ∈ J \ Z0 : d′j(aj) = 0},

ZB = {j ∈ J \ Z0 : d′j(bj) = 0}.

Here “0” is the “computer zero”. In particular, when J = Z0 and dj(xj) =: dj = 0, j ∈ J ,
α = 0, then feasible region X (2) – (3) is defined only by (3).

13

Theorem 3 (Characterization of the optimal solution to Problem (C): an extended
version)
Problem (C) can be decomposed into two subproblems: (C1) for j ∈ Z0 and (C2) for
j ∈ J \ Z0 with α := α−∑

j∈Z0 dj(x
∗
j) ≡ α−∑

j∈Z0 dj.
The optimal solution to (C1) is

x∗j =


aj, j ∈ Z0, h≤j ≤ aj

bj, j ∈ Z0, h≤j ≥ bj

h≤j , j ∈ Z0, aj < h≤j < bj,

(30)

that is, subproblem (C1) itself is decomposed into n0 ≡ |Z0| independent problems.
The optimal solution to (C2) is given by (14), (15), (16) with J := J \ Z0, α :=

α − ∑
j∈Z0 dj(x

∗
j) ≡ α − ∑

j∈Z0 dj, where we adopt
c′j(aj)

d′j(aj)
= limt→aj

c′j(t)

d′j(t)
if j ∈ ZA, and

we adopt
c′j(bj)

d′j(bj)
= limt→bj

c′j(t)

d′j(t)
when j ∈ ZB.

It is permissible some of the limits above be equal to −∞ or +∞.
Proof of Theorem 3 repeats in part the proof of Theorem 1.

Proof. Necessity. Let x∗ = (x∗j)j∈J be an optimal solution to Problem (C).
1) Let j ∈ Z0, that is, d′j(xj) ≡ 0. The KKT conditions for Problem (C) are

c′j(x
∗
j)− uj + vj = 0, j ∈ Z0 (from (5)) and (6)− (11).

a) If x∗j = aj, then uj ≥ 0, vj = 0 according to (7) and (11). KKT condition (5)

and definition of h≤j imply that c′j(x
∗
j) = uj ≥ 0 ≡ c′j(h

≤
j). Since c′j(xj) is a monotone

increasing function of xj for each j ∈ J , then x∗j ≡ aj ≥ h≤j .
b) If x∗j = bj, then uj = 0, vj ≥ 0 according to (6) and (11). Therefore (5) implies that

c′j(x
∗
j) = −vj ≤ 0 ≡ c′j(h

≤
j). Using that c′j(xj) is a monotone increasing function of xj for

each j ∈ J , we obtain x∗j ≡ bj ≤ h≤j .
c) If aj < x∗j < bj, then uj = vj = 0 according to (6) and (7). Therefore (5) implies

that −c′j(x
∗
j) = 0, that is, x∗j = h≤j according to definition of h≤j .

2) Components of the optimal solution to (C2) are obtained by using the same ap-
proach as that of the “necessity” part of the proof of Theorem 1 but with the reduced index
set J := J \Z0 and reduced right-hand side of (2) α := α−∑

j∈Z0 dj(x
∗
j) ≡ α−∑

j∈Z0 dj.
Sufficiency. Conversely, let x∗ = (x∗j)j∈J ∈ X and the components of x∗ satisfy (30)

for j ∈ Z0, and (14), (15), (16) with J := J\Z0 and α := α−∑
j∈Z0 dj(x

∗
j) ≡ α−∑

j∈Z0 dj.
Set:

λ = 0; uj = vj = 0 for aj < x∗j < bj, j ∈ Z0;
uj = c′j(aj), vj = 0 for x∗j = aj, j ∈ Z0;
uj = 0, vj = −c′j(bj) for x∗j = bj, j ∈ Z0.

If λ > 0 set:

λ = −
c′j(x

∗
j)

d′j(x
∗
j)

= λ(x∗) (> 0) from (16);

uj = vj = 0 for aj < x∗j < bj, j ∈ J \ Z0;

uj = c′j(aj) + λd′j(aj) (≥ 0), vj = 0 for x∗j = aj, j ∈ J \ Z0;

uj = 0, vj = −c′j(bj)− λd′j(bj) (≥ 0) for x∗j = bj, j ∈ J \ Z0.

14

If λ = 0 set:

λ = 0; uj = vj = 0 for aj < x∗j < bj, j ∈ J \ Z0;
uj = c′j(aj) (≥ 0), vj = 0 for x∗j = aj, j ∈ J \ Z0;

uj = 0, vj = −c′j(bj) (≥ 0) for x∗j = bj, j ∈ J \ Z0.

It can be verified that x∗, λ, uj, vj, j ∈ J , satisfy the KKT conditions (5) – (11). Then
x∗ with components (30) for j ∈ Z0, and (14), (15), (16) with α := α −∑

j∈Z0 dj(x
∗
j) ≡

α−∑
j∈Z0 dj for j ∈ J \ Z0 is an optimal solution to Problem (C) = (C1) ∪ (C2). �

Thus, with the use of Theorem 3, we can express components x∗j , j ∈ Z0, of the

optimal solution to Problem (C) without the necessity of calculating expressions − c′j(aj)

d′j(aj)

with d′j(aj) = 0 and − c′j(bj)

d′j(bj)
with d′j(bj) = 0.

4.2 Computational aspects

Algorithm 1 can also be applied in cases when aj = −∞ for some j ∈ J and/or bj = ∞
for some j ∈ J . However, if we use the computer values of −∞ and +∞ at steps 0 and 1
of Algorithm 1 to check whether the feasible region X (2) – (3) is empty or nonempty, and

at step 3 in the expressions − c′j(xj)

d′j(xj)
with xj = −∞ and/or xj = +∞, by means of which

we construct index sets Jλ
a , Jλ

b , Jλ, this could sometimes lead to arithmetic overflow. If we
use other values of −∞ and +∞ with smaller absolute values than those of the computer
values of −∞ and +∞, it would lead to inconvenience and dependence on the data of
the particular problems. To avoid these difficulties and to take into account the above
discussion, it is convenient to do the following.

Construct the sets of indices:

SV N = {j ∈ J \ Z0 : aj > −∞, bj < +∞}

SV 1 = {j ∈ J \ Z0 : aj > −∞, bj = +∞} (31)

SV 2 = {j ∈ J \ Z0 : aj = −∞, bj < +∞}

SV = {j ∈ J \ Z0 : aj = −∞, bj = +∞}.

It is obvious that Z0∪SV ∪SV 1∪SV 2∪SV N = J , that is, the set J \Z0 is partitioned
into the four subsets SV N, SV 1, SV 2, SV , defined above.

In computer programming of Algorithm 1, we use computer values of −∞ and +∞
for constructing the sets SV N, SV 1, SV 2, SV .

In order to construct the sets Jλ
a , Jλ

b , Jλ without the necessity of calculating the values

− c′j(xj)

d′j(xj)
with xj = −∞ or xj = +∞, except for the sets J, Z0, SV, SV 1, SV 2, SV N , we

need some subsidiary sets defined as follows.

15

For SV N :

Jλ SV N =

{
j ∈ SV N : −

c′j(bj)

d′j(bj)
< λ < −

c′j(aj)

d′j(aj)

}
,

Jλ SV N
a =

{
j ∈ SV N : λ ≥ −

c′j(aj)

d′j(aj)

}
,

Jλ SV N
b =

{
j ∈ SV N : λ ≤ −

c′j(bj)

d′j(bj)

}
;

for SV 1:

Jλ SV 1 =

{
j ∈ SV 1 : λ < −

c′j(aj)

d′j(aj)

}
, (32)

Jλ SV 1
a =

{
j ∈ SV 1 : λ ≥ −

c′j(aj)

d′j(aj)

}
;

for SV 2:

Jλ SV 2 =

{
j ∈ SV 2 : λ > −

c′j(bj)

d′j(bj)

}
,

Jλ SV 2
b =

{
j ∈ SV 2 : λ ≤ −

c′j(bj)

d′j(bj)

}
;

for SV :
Jλ SV = SV.

Then
Jλ := Jλ SV N ∪ Jλ SV 1 ∪ Jλ SV 2 ∪ Jλ SV

Jλ
a := Jλ SV N

a ∪ Jλ SV 1
a

Jλ
b := Jλ SV N

b ∪ Jλ SV 2
b .

(33)

We use the sets Jλ, Jλ
a , Jλ

b , defined by (33), as the corresponding sets with the same
names in Algorithm 1.

Using these index sets, the check whether feasible region X (2) – (3) is empty or
nonempty is modified as follows.

i) If SV N∪SV 1 = J \Z0, that is, if all aj’s are finite but some of (or all) bj’s are equal
to +∞ for the variables which are involved in (2), then it is sufficient to check whether∑

j∈J\Z0

dj(aj) ≤ α

and it is not necessary to check whether α ≤ ∑
j∈J\Z0 dj(bj) at step 1 of Algorithm 1 in

this case;
ii) Else if SV 2 ∪ SV 6= ∅, that is, if there exists at least one variable xj which is

involved in (2) with aj = −∞ then:
if cj(xj) ≥ 0, j ∈ J , and SV N ∪ SV 1 6= ∅, then it is sufficient to check whether∑

j∈SV N∪SV 1

dj(aj) ≤ α

else X 6= ∅ and it is not necessary to check anything else in this case.

16

With the use of results of this section, steps 0, 1 and 3 of Algorithm 1 can be modified
as follows.

Step 01. (Initialization) J := {1, . . . , n}, k := 0, α(0) := α, n(0) := n, J (0) := J,
Jλ

a := ∅, Jλ
b := ∅, initialize h≤j , j ∈ J .

Construct the set Z0. If j ∈ Z0 then:
if h≤j ≤ aj then x∗j := aj

else if h≤j ≥ bj then x∗j := bj

else if aj < h≤j < bj then x∗j := h≤j .
If J = Z0 and

∑
j∈J dj ≤ α go to step 10

else if J = Z0 and
∑

j∈J dj > α go to step 9.

Set J := J \ Z0, J (0) := J, n(0) := n− |Z0|, α(0) := α−
∑

j∈Z0

dj.

Construct the sets SV N, SV 1, SV 2, SV .
If SV N ∪ SV 1 = J then

if
∑

j∈J dj(aj) ≤ α go to step 1
else go to step 9 (feasible region X is empty)

else if SV 2 ∪ SV 6= ∅ then
if cj(xj) ≥ 0, j ∈ J , and SV N ∪ SV 1 6= ∅ then

if
∑

j∈SV N∪SV 1 dj(aj) ≤ α go to step 1
else go to step 9 (feasible region X is empty)

else go to step 1 (feasible region X is nonempty).
Step 11. Construct the sets J0 SV N , J0 SV N

a , J0 SV N
b , J0 SV 1, J0 SV 1

a , J0 SV 2, J0 SV 2
b , J0 SV

(for λ = 0).
Construct the sets J0

a , J0
b , J0 through (33) with λ = 0. Calculate

δ(0) :=
∑
j∈J0

a

dj(aj) +
∑
j∈J0

b

dj(bj) +
∑
j∈J0

dj(h
≤
j)− α.

If δ(0) ≤ 0 then λ := 0, go to step 8
else if δ(0) > 0 then:

if SV 2 ∪ SV N = J then
if α ≤ ∑

j∈J dj(bj) go to step 2
else go to step 9 (there does not exist a λ∗ > 0 such that δ(λ∗) = 0)

else if SV 1 ∪ SV 6= ∅ go to step 2 (there exists a λ∗ > 0 such that δ(λ∗) = 0).
Step 31. Construct the sets Jλ SV N , Jλ SV N

a , Jλ SV N
b , Jλ SV 1, Jλ SV 1

a , Jλ SV 2, Jλ SV 2
b , Jλ SV

(with J (k) instead of J).

Construct the sets Jλ(k)
a , J

λ(k)
b , Jλ(k) by using (33) and find their cardinalities.

Go to step 4.

Modifications of Algorithm 1, connected with theoretical and computational aspects,
do not influence upon its computational complexity, discussed in Section 3, because these
modifications do not affect the “iterative” steps of Algorithm 1.

5 Computational Experiments

In this section, we present results of some numerical experiments, obtained by applying
Algorithm 1, suggested in this paper, for solving Problem (C) with particular functions

17

cj(xj) and dj(xj), j ∈ J . The computations have been performed on an Intel Pentium IV
Celeron Processor 2.66 GHz/480MB SDRAM IBM PC compatible. Each type of problems
was run 30 times. Parameters and data were randomly generated in intervals where the
functions cj(xj) are strictly convex. Only because of the limitations of the interactive
system used, large-scale problems of more than 1500 variables are not tested.
1.

cj(xj) =
sj

xj

, xj 6= 0, sj > 0; dj(xj) = djx
p
j , dj ≥ 0, p ≥ 1, xj > 0.

Number of variables n=1200 n=1500
(Average) Number of iterations 2.10 2.13
Average run time (in seconds) 0.001 0.0012

2.

cj(xj) = −sj ln mjxj, sj > 0, mj > 0, xj > 0; dj(xj) = djx
p
j , dj ≥ 0, p ≥ 1, xj > 0.

Number of variables n=1200 n=1500
(Average) Number of iterations 2.07 3.03
Average run time (in seconds) 0.0012 0.0018

3.

cj(xj) = cjx
q
j , cj > 0, q > 1, xj ≥ 0, dj(xj) = djx

p
j ; dj ≥ 0, p > 1, xj > 0.

Number of variables n=1200 n=1500
(Average) Number of iterations 3.03 3.07
Average run time (in seconds) 0.0012 0.0019

Similarly, we can consider other strictly convex objective functions c(x) =
∑

j∈J cj(xj)
and convex constraint functions dj(xj), j ∈ J .

Effectiveness of Algorithm 1 for Problem (C) has been tested by many other examples.
As we can observe, the (average) number of iterations is much less than the number of
variables n for large n.

References

[1] P. Berman, N. Kovoor, and P.M. Pardalos, Algorithms for the least distance problem, in:
Complexity in Numerical Optimization, P.M. Pardalos (Ed.), World Scientific, New Jersey,
1993, pp. 33-56.

[2] D.P. Bertsekas, Projected Newton methods for optimization problems with simple con-
straints, SIAM J. Control Optim. 20 (1982) 221-246.

[3] G.R. Bitran, A.C. Hax, Disaggregation and resource allocation using convex knapsack prob-
lems with bounded variables, Management Sci. 27 (1981), No. 4, 431-441.

[4] J.R. Brown, Bounded knapsack sharing, Math. Program. 67 (1994), No. 3, 343 - 382.

[5] P. Brucker, An O(n) algorithm for quadratic knapsack problems, Oper. Res. Lett. 3 (1984),
No. 3, 163-166.

18

[6] P.H. Calamai, J.J. Moré, Quasi-Newton updates with bounds, SIAM J. Numer. Anal. 24
(1987), No. 6, 1434-1441.

[7] A. Charnes, W.W. Cooper, The theory of search: optimum distribution of search effort,
Management Sci. 5 (1958), 44-50.

[8] R.W. Cottle, S.G. Duval, K. Zikan, A Lagrangean relaxation algorithm for the constrained
matrix problem, Naval Res. Logist. Quart. 33 (1986), No. 1, 55-76.

[9] R.S. Dembo, U. Tulowitzki, On the minimization of quadratic functions subject to box
constraints, Working Paper Series B 71, School of Organization and Management, Yale
University, New Haven, 1983.

[10] J.-P. Dussault, J.A. Ferland, B. Lemaire, Convex quadratic programming with one con-
straint and bounded variables, Math. Program. 36 (1986), No. 1, 90-104.

[11] J.A. Ferland, B. Lemaire, P. Robert, Analytic solutions for nonlinear programs with one
or two equality constraints, Publication 285, Departement d’informatique et de recherche
operationnelle, Université de Montréal, Montréal, 1978.

[12] S.M. Grzegorski, Orthogonal projections on convex sets for Newton-like methods, SIAM J.
Numer. Anal. 22 (1985), 1208-1219.

[13] M. Held, P. Wolfe, H.P. Crowder, Validation of subgradient optimization, Math. Program.
6 (1974), 62-88.

[14] R. Helgason, J. Kennington, H. Lall, A polynomially bounded algorithm for a singly con-
strained quadratic program, Math. Program. 18 (1980), No. 3, 338-343.

[15] G.T.Herman, A.Lent, A family of iterative quadratic optimization algorithms for pairs of
inequalities, with application in diagnostic radiology, Math. Program. Study 9 (1978), 15-29.

[16] N. Katoh, T. Ibaraki, H. Mine, A polynomial time algorithm for the resource allocation
problem with a convex objective function, J. Oper. Res. Soc. 30 (1979), No. 5, 449-455.

[17] H. Luss, S.K. Gupta, Allocation of effort resources among competing activities, Oper. Res.
23 (1975), No. 2, 360-366.

[18] R.K. McCord, Minimization with one linear equality constraint and bounds on the variables,
Technical Report SOL 79-20, System Optimization Laboratory, Department of Operations
Research, Stanford University, Stanford, 1979.

[19] C. Michelot, A finite algorithm for finding the projection of a point onto the canonical
simplex of IRn, J. Optim. Theory Appl. 50 (1986), No. 1, 195-200.

[20] J.J. Moré, G. Toraldo, Algorithms for bound constrained quadratic programming problems,
Numer. Math. 55 (1989), No. 4, 377-400.

[21] J.J. Moré, S.A. Vavasis, On the solution of concave knapsack problems, Math. Program. 49
(1991), No. 3, 397-411.

[22] P.M. Pardalos, N. Kovoor, An algorithm for a singly constrained class of quadratic programs
subject to upper and lower bounds, Math. Program. 46 (1990), No. 3, 321-328.

19

[23] P.M.Pardalos, Y. Ye, C.-G. Han, Algorithms for the solution of quadratic knapsack prob-
lems, Linear Algebra Appl. 152 (1991), 69-91.

[24] A.G. Robinson, N. Jiang, C.S. Lerme, On the continuous quadratic knapsack problem,
Math. Program. 55 (1992), No. 1, 99-108.

[25] R.T. Rockafellar, R.J.-B. Wets, A note about projections in the implementation of stochas-
tic quasigradient methods, in: Numerical Techniques for Stochastic Optimization, Yu. Er-
moliev, R.J.- B. Wets (Eds.), Springer Verlag, Berlin, 1988, pp. 385-392.

[26] S.M. Stefanov, On the implementation of stochastic quasigradient methods to some facility
location problems, Yugosl. J. Oper. Res., 10 (2000), No. 2, 235-256.

[27] S.M. Stefanov, Convex separable minimization subject to bounded variables, Comput. Op-
tim. Appl. 18 (2001), No. 1, 27-48.

[28] S.M. Stefanov, Convex quadratic minimization subject to a linear constraint and box con-
straints, Appl. Math. Res. Express 2004 (2004), No. 1, 17-42.

[29] S.M. Stefanov, Polynomial algorithms for projecting a point onto a region defined by a
linear constraint and box constraints in IRn, J. Appl. Math. 2004 (2004), No. 5, 409-431.

[30] S.M. Stefanov, Convex separable minimization problems with a linear constraint and
bounded variables, Int. J. Math. Math. Sci. 2005 (2005), No. 9, 1339-1363.

[31] S.M. Stefanov, An efficient method for minimizing a convex separable logarithmic function
subject to a convex inequality constraint or linear equality constraint, J. Appl. Math. Decis.
Sci. 2006 (2006), No. 1, Article ID 89307, 1-19.

[32] S.M. Stefanov, Minimizing a convex separable exponential function subject to linear equal-
ity constraint and bounded variables, J. Interdiscip. Math. 9 (2006), No. 1, 207-226.

[33] S.M. Stefanov, Minimization of a convex linear-fractional separable function subject to a
convex inequality constraint or linear inequality constraint and bounds on the variables,
Appl. Math. Res. Express 2006 (2006), No. 2, Article ID 36581, 1-24.

[34] S.M. Stefanov, Minimization of a strictly convex separable function subject to a convex
inequality constraint or linear equality constraints and bounds on the variables, Sci. Res.
5 (2007) 1-10.

[35] S.A. Vavasis, Local minima for indefinite quadratic knapsack problems, Math. Program. 54
(1992), No. 2, 127-153.

[36] P. Wolfe, Algorithm for a least-distance programming problem, Math. Program. Study 1
(1974), 190-205.

[37] P.H. Zipkin, Simple ranking methods for allocation of one resource, Management Sci. 26
(1980), No. 1, 34-43.

20

