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Abstract

In this paper, the problem of minimizing/maximizing the quadratic form 〈Ax,x〉
provided that the variables x belong to the unit sphere of Rn is considered. A
nonstandard approach, that uses the Cauchy-Schwarz inequality and induced matrix
norms, for solving this problem is suggested.
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1 Introduction. Statement of the problem

Consider the following

Problem. Let A be a n×n symmetric matrix with real components (linear continuous
self-conjugate operator), x ∈ Rn. Find

min 〈Ax,x〉 (1)

subject to
〈x,x〉 ≡ ‖x‖2 = 1, (2)

where 〈., .〉 denotes the inner (scalar) product of the Hilbert space Rn, 〈x,y〉 =
∑n
i=1 xiyi

for each x,y ∈ Rn.

According to a Weierstrass theorem, this problem has an optimal solution because the
objective function is continuous and the feasible region is a compact set in Rn.

A traditional way for solving this problem is that with the use of the Lagrange mul-
tipliers. It can be obtained that

min
‖x‖2=1

〈Ax,x〉 = λ∗1, (3)

where λ∗1 is the least eigenvalue of A and the solution to this problem is the eigenvector
x∗ of A associated with λ∗1.
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Indeed, the Lagrangian function for problem (1)− (2) is

L(x,λ) = λ0〈Ax,x〉+ λ1〈x,x〉.

According to the Lagrange multipliers theorem ([3], [5]), the necessary condition for the
minimum solution is

λ0Ax + λ1x = 0,

where 〈x,x〉 = 1, and the Lagrange multipliers λ0 and λ1 cannot be simultaneously equal
to zero. If we assume that λ0 = 0, it would follow that λ1x = 0, where λ1 must be
different from zero because λ0 = 0 by the assumption. Hence, x = 0. However, x = 0 is
not a feasible value because 〈0,0〉 6= 1. Therefore, λ0 6= 0, and λ0Ax + λ1x = 0. Dividing
both sides of this vector equality by λ0 6= 0, we get Ax + λ1

λ0
x = 0, or Ax = −λ1

λ0
x. Hence,

Ax = λ∗1x, (4)

where λ∗1
def
= −λ1

λ0
, which means that the optimal solution x∗ of problem (1) − (2) is an

eigenvector of matrix A, and λ∗1 is the corresponding eigenvalue. Multiplying both sides
of (4) by x, we obtain

min
‖x‖2=1

〈Ax,x〉 = λ∗1〈x,x〉 = λ∗1,

where we have used (2). This means that the optimal solution to problem (1)− (2) is the
eigenvector x∗ associated with the least eigenvalue λ∗1 of matrix A, and λ∗1 is the minimal
value of the quadratic function 〈Ax,x〉 subject to 〈x,x〉 = 1.

In this paper, we suggest another approach for solving problem (1) − (2) which uses
characteristics of this problem.

2 Preliminaries

As it is known, a linear operator is continuous if and only if it is bounded, and the concepts
of “symmetry” and “self-conjugacy” are equivalent for bounded operators.

Let V be a vector space over the field F (R or C).

Definition 1 ([1]) A function ‖.‖ : V → R is called a vector norm if for all x,y ∈ V,
1) ‖x‖ ≥ 0 Nonnegative
‖x‖ = 0 ⇐⇒ x = 0 Positive, Nonsingular

2) ‖cx‖ = |c|‖x‖ for all scalars c ∈ F Homogeneous
3) ‖x + y‖ ≤ ‖x‖+ ‖y‖ Triangle inequality.

Let Mn be the totality of all n×n square matrices over F , L be the space of continuous
linear operators in F n. We can use vector norms on F n (on F n2

for Mn) defined in
Definition 1 as norms on Mn because Mn is itself a vector space of dimension n2. However,
the natural multiplication operation of matrices (of linear continuous operators) allows to
introduce a new concept which turns out to be useful.

Definition 2 ([1], [2]) A function ‖.‖ : Mn → R (‖.‖ : L → R) is called a matrix norm
(a linear operator norm) if for all A,B ∈Mn (if for all A,B ∈ L) it satisfies the following
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axioms:
1) ‖A‖ ≥ 0 Nonnegative
‖A‖ = 0 if and only if A = 0 Positive, Nonsingular

2) ‖cA‖ = |c|‖A‖ for all scalars c ∈ F Homogeneous
3) ‖A+B‖ ≤ ‖A‖+ ‖B‖ Triangle inequality
4) ‖AB‖ ≤ ‖A‖‖B‖ Submultiplicative.

Since the linear operators in Rn can be identified with matrices, we are able to consider
both cases simultaneously and it is sufficient to deal with matrix norms only. Moreover,
a linear operator A in Rn is self-conjugate if and only if the matrix A associated with A
is symmetric.

Some of vector norms turn out to be matrix norms in the vector space Mn in the sense
of Definition 2, other vector norms are not matrix norms.

Definition 3 ([1], [4]) Let ‖.‖ be a vector norm on Cn. Define matrix norm ‖.‖ on Mn

by
‖A‖ := max

‖x‖=1
‖Ax‖. (5)

Remark 1 We can use “max” rather than “sup” in Definition 3, according to Weierstrass
theorem, because ‖Ax‖ is a continuous function of x and the unit sphere S‖.‖ ≡ {x ∈ V :
‖x‖ = 1} of the vector norm is a compact set in the finite-dimensional vector space V .

Theorem 1 ([1]) The function ‖.‖ defined in Definition 3 is a matrix norm on Mn,
‖Ax‖ ≤ ‖A‖‖x‖ for all A ∈Mn and for all x ∈ Cn, and ‖I‖ = 1, where I is the identity.

Definition 4 The matrix norm from Definition 3 is said to be induced by the vector norm
‖.‖. Sometimes it is called operator norm or the least upper bound norm associated with
the vector norm ‖.‖.

Remark 2 The inequality ‖Ax‖ ≤ ‖A‖‖x‖ in the statement of Theorem 1 shows that
the induced matrix norm is compatible with the corresponding vector norm ‖.‖.

It is worthy to note another property of the induced matrix norms – “minimality”,
according to which each induced matrix norm ‖.‖m is minimal, that is, it is such that
‖A‖m ≤ ‖A‖ for all A ∈Mn and for any other matrix norm ‖.‖ on Mn.

For example, matrix norm induced by the Euclidean (Hilbert, l2−) vector norm

‖x‖ =
√
〈x,x〉 (6)

is the so-called spectral norm: ‖A‖2 =
√
λ∗1, where λ∗1 is the largest eigenvalue of A∗A, A∗

is the matrix (operator) conjugate to A.

Remark 3 Since A∗A is a symmetric and positive definite matrix (symmetric and posi-
tive operator) then all its eigenvalues are real and nonnegative.

There is only one minimal norm in the class of unitarily invariant matrix norms (that
is, matrix norms ‖.‖ such that ‖A‖ = ‖UAV ‖ for all A ∈Mn and for all unitary matrices
U, V ∈Mn) and it is namely the spectral norm.

The conjugate space to the Hilbert space Rn with l2− norm is Rn itself with l2−
norm. More generally, the conjugate space H∗ to a Hilbert space H is the same Hilbert
space H, that is, H∗ = H.
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3 Main result

According to the Cauchy-Schwarz inequality |〈Ax,x〉| ≤ ‖Ax‖‖x‖ we have

−‖Ax‖‖x‖ ≤ 〈Ax,x〉 ≤ ‖Ax‖‖x‖

where
a) the left inequality is satisfied with equality if and only if Ax = αx,
b) the right inequality is satisfied with equality if and only if Ax = βx

for some α, β ∈ F .

By the assumption, ‖x‖ def
=

√
〈x,x〉 = 1. Therefore,

min
‖x‖=1

(−‖Ax‖‖x‖) ≤ min
‖x‖=1

〈Ax,x〉,

max
‖x‖=1

〈Ax,x〉 ≤ max
‖x‖=1

‖Ax‖‖x‖.

It follows that
− max
‖x‖=1

‖Ax‖ ≤ min
‖x‖=1

〈Ax,x〉,

max
‖x‖=1

〈Ax,x〉 ≤ max
‖x‖=1

‖Ax‖,

where we have used that min{−f(x),x ∈ X} = −max{f(x),x ∈ X} for each objective
function f and for each feasible region X. In accordance with Definition 3 we get

−‖A‖ ≤ min
‖x‖=1

〈Ax,x〉,

max
‖x‖=1

〈Ax,x〉 ≤ ‖A‖.

Concerning Euclidean vector norm of x we have

−
√
λ∗1 ≤ min

‖x‖=1
〈Ax,x〉,

max
‖x‖=1

〈Ax,x〉 ≤
√
λ∗1

where λ∗1 is the largest eigenvalue among eigenvalues λ∗j , j = 1, . . . , n of ATA. However,
A is symmetric matrix (operator). Therefore, AT = A,ATA = A2, hence, λ∗j = λ2

j , j =
1, . . . , n, where λj, j = 1, . . . , n are the eigenvalues of A. In particular, λ∗1 = λ2

1. Therefore,

−|λ1| ≤ min
‖x‖=1

〈Ax,x〉, (7)

max
‖x‖=1

〈Ax,x〉 ≤ |λ1|, (8)

where λ1 is the eigenvalue of A with the largest absolute value.
According to a) and b), the left and the right inequalities are satisfied as equalities

with Ax = λmx and Ax = λMx, respectively, that is, for the eigenvectors xm and xM
associated with the eigenvalues λm and λM of A, respectively, and the minimum and the
maximum value of 〈Ax,x〉 with ‖x‖ = 1 are λm and λM , respectively. Indeed,
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min
‖x‖=1

〈Ax,x〉 = 〈λmxm,xm〉 = λm〈xm,xm〉 = λm, (9)

and
max
‖x‖=1

〈Ax,x〉 = 〈λMxM ,xM〉 = λM〈xM ,xM〉 = λM . (10)

Since λm and λM are eigenvalues of A and since (9), (10) hold then λm is the least
eigenvalue of A and λM is the largest eigenvalue of A. If we assume the contrary, that
there exist a smaller eigenvalue α of A than λm and a larger eigenvalue β of A than λM
it would follow that

min
‖x‖=1

〈Ax,x〉 = 〈αx,x〉 = α〈x,x〉 = α < λm,

and
max
‖x‖=1

〈Ax,x〉 = 〈βx,x〉 = β〈x,x〉 = β > λM

which is in contradiction with (9) and (10).
Thus,

min
‖x‖=1

〈Ax,x〉 = λm (11)

and the solution to the original problem (1) − (2) is the eigenvector xm of A associated
with λm, and at the same time we obtained that

max
‖x‖=1

〈Ax,x〉 = λM (12)

and the solution to this problem is the eigenvector xM of A associated with λM , where
λm and λM were defined above.

4 Conclusions

As it is reasonable to expect, both approaches – Lagrange multipliers theorem on the one
hand, and the Cauchy-Schwarz inequality along with the properties of induced matrix
norms, on the other hand – for solving the problem under consideration give the same
result.
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