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Abstract

In this paper, the problem of minimizing/maximizing the quadratic form (Ax, x)
provided that the variables x belong to the unit sphere of R™ is considered. A
nonstandard approach, that uses the Cauchy-Schwarz inequality and induced matrix
norms, for solving this problem is suggested.
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1 Introduction. Statement of the problem

Consider the following

Problem. Let A be a nxn symmetric matrix with real components (linear continuous
self-conjugate operator), x € R™. Find

min (Ax, x) (1)

subject to
(x,x) = [[x]* =1, (2)

where (.,.) denotes the inner (scalar) product of the Hilbert space R"™, (x,y) = > | z;y;
for each x,y € R".

According to a Weierstrass theorem, this problem has an optimal solution because the
objective function is continuous and the feasible region is a compact set in R™.

A traditional way for solving this problem is that with the use of the Lagrange mul-
tipliers. It can be obtained that

min (Ax,x) = A, (3)

[[x[[?=1

where A] is the least eigenvalue of A and the solution to this problem is the eigenvector
x* of A associated with Aj.



Indeed, the Lagrangian function for problem (1) — (2) is
L(x,A) = Ao(Ax, x) + A\ (X, X).

According to the Lagrange multipliers theorem ([3], [5]), the necessary condition for the
minimum solution is
)\0AX + )\1X = O,

where (x,x) = 1, and the Lagrange multipliers Ag and \; cannot be simultaneously equal
to zero. If we assume that \g = 0, it would follow that A\;x = 0, where \; must be
different from zero because Ay = 0 by the assumption. Hence, x = 0. However, x = 0 is
not a feasible value because (0,0) # 1. Therefore, \yg # 0, and \gAx + A\;x = 0. Dividing

both sides of this vector equality by A\ # 0, we get Ax + :\\—;x =0, or Ax = —i—;x. Hence,
Ax = \Ix, (4)
where A} o —i—;, which means that the optimal solution x* of problem (1) — (2) is an

eigenvector of matrix A, and Aj is the corresponding eigenvalue. Multiplying both sides
of (4) by x, we obtain

H>I<IH121E1 <AX7 X> = Al <X7 X> = Al
where we have used (2). This means that the optimal solution to problem (1) — (2) is the
eigenvector x* associated with the least eigenvalue A} of matrix A, and A} is the minimal
value of the quadratic function (Ax,x) subject to (x,x) = 1.

In this paper, we suggest another approach for solving problem (1) — (2) which uses
characteristics of this problem.

2 Preliminaries

As it is known, a linear operator is continuous if and only if it is bounded, and the concepts
of “symmetry” and “self-conjugacy” are equivalent for bounded operators.
Let V' be a vector space over the field F(R or C).

Definition 1 ([1]) A function ||.|| : V' — R is called a vector norm if for all x,y € V,

1) [|x][ >0 Nonnegative
x| =0 <= x=0 Positive, Nonsingular

2) ||ex|| = |c|||x||  for all scalars ¢ € F Homogeneous

3) [Ix+yll < [Ix[| + (¥l Triangle inequality.

Let M, be the totality of all n x n square matrices over F', L be the space of continuous
linear operators in F". We can use vector norms on F" (on F " for M,,) defined in
Definition 1 as norms on M,, because M, is itself a vector space of dimension n?. However,
the natural multiplication operation of matrices (of linear continuous operators) allows to
introduce a new concept which turns out to be useful.

Definition 2 ([1], [2]) A function ||.| : M, — R (]|.|| : L — R) is called a matriz norm
(a linear operator norm) if for all A, B € M,, (if for all A, B € L) it satisfies the following



axioms:

1) [[Al >0 Nonnegative

|Al| =0 if and only if A =0 Positive, Nonsingular
2) ||cAll = |e|llA]]  for all scalars ¢ € F Homogeneous
3) |[A+ BJ| < ||A|l + || B]| Triangle inequality
4) |AB|| < |A]l||B]| Submultiplicative.

Since the linear operators in R™ can be identified with matrices, we are able to consider
both cases simultaneously and it is sufficient to deal with matrix norms only. Moreover,
a linear operator A4 in R" is self-conjugate if and only if the matrix A associated with A
is symmetric.

Some of vector norms turn out to be matrix norms in the vector space M, in the sense
of Definition 2, other vector norms are not matrix norms.

Definition 3 ([1], [4]) Let ||.|| be a vector norm on C". Define matriz norm ||.|| on M,
by
A4l = s 4. )

Remark 1 We can use “max” rather than “sup” in Definition 3, according to Weierstrass
theorem, because || Ax|| is a continuous function of x and the unit sphere S = {x € V :
|x|| = 1} of the vector norm is a compact set in the finite-dimensional vector space V.

Theorem 1 ([1]) The function ||.|| defined in Definition 3 is a matriz norm on M,,
| Ax|| < ||AJl||x]|| for all A € M, and for allx € C", and ||I|| = 1, where I is the identity.

Definition 4 The matrix norm from Definition 3 is said to be induced by the vector norm
|.]|. Sometimes it is called operator norm or the least upper bound norm associated with
the vector norm ||.||.

Remark 2 The inequality |Ax|| < ||Al|||x|| in the statement of Theorem 1 shows that
the induced matrix norm is compatible with the corresponding vector norm ||.||.

It is worthy to note another property of the induced matrix norms — “minimality”,
according to which each induced matrix norm ||.||,, is minimal, that is, it is such that
|Allm < |JA|| for all A € M, and for any other matrix norm ||.|| on M,.

For example, matrix norm induced by the Euclidean (Hilbert, l5—) vector norm

%]l = /(x,%) (6)

is the so-called spectral norm: ||A||a = v/A}, where A} is the largest eigenvalue of A*A, A*
is the matrix (operator) conjugate to A.

Remark 3 Since A*A is a symmetric and positive definite matrix (symmetric and posi-
tive operator) then all its eigenvalues are real and nonnegative.

There is only one minimal norm in the class of unitarily invariant matrix norms (that
is, matrix norms ||.|| such that ||A|| = ||[UAV|| for all A € M,, and for all unitary matrices
U,V € M,) and it is namely the spectral norm.

The conjugate space to the Hilbert space R™ with l,— norm is R" itself with lo—
norm. More generally, the conjugate space H* to a Hilbert space H is the same Hilbert
space H, that is, H* = H.



3 Main result

According to the Cauchy-Schwarz inequality |(Ax,x)| < ||Ax]|||x]| we have
—lAx[l[x]] < (Ax,x) < || Ax][[[x]]

where
a) the left inequality is satisfied with equality if and only if Ax = ax,
b) the right inequality is satisfied with equality if and only if Ax = §x
for some o, § € F.
By the assumption, ||x|| % /(x,x) = 1. Therefore,

min, ([ Ax(ix])) < m

in (Ax.x
Ix[|=1 |H:1< X)s

max (Ax,x) < max |[|Ax]|x].
lIx[[=1 lIx[[=1

It follows that

— max ||Ax| < min (Ax,x),
[Ix[|=1 [Ix[|I=1

max (Ax,x) < max [|Ax|,
lIx[[=1 lIx[[=1

where we have used that min{—f(x),x € X} = —max{f(x),x € X} for each objective
function f and for each feasible region X. In accordance with Definition 3 we get

~llA] < min (Ax,x)

max {Ax, x) < [|A].

Concerning Euclidean vector norm of x we have

—/A} < min (Ax,x),

=1

max (Ax,x) < y/A}

lIxll=1
where A7 is the largest eigenvalue among eigenvalues A7, j = 1,...,n of AT A. However,
A is symmetric matrix (operator). Therefore, AT = A, ATA = A2, hence, A= )\?, j=
1,...,n, where \;, j = 1,...,n are the eigenvalues of A. In particular, \j = A\?. Therefore,
il < i, (4%, %), 7
max (4x,%) < [\, ®)

where A; is the eigenvalue of A with the largest absolute value.

According to a) and b), the left and the right inequalities are satisfied as equalities
with Ax = A\, x and Ax = \y/x, respectively, that is, for the eigenvectors x,, and x;,
associated with the eigenvalues \,, and \y; of A, respectively, and the minimum and the
maximum value of (Ax,x) with ||x|| =1 are \,, and Ay, respectively. Indeed,



min (AX,X) = (A\nXm, Xm) = A (X, Xm) = A, (9)

lIx||=1
and

HHlHa_Xl (Ax,x) = (Ayxar, Xu) = Avr(Xar, Xar) = A (10)

Since A, and A\ are eigenvalues of A and since (9), (10) hold then )\, is the least
eigenvalue of A and \j; is the largest eigenvalue of A. If we assume the contrary, that
there exist a smaller eigenvalue av of A than A, and a larger eigenvalue § of A than Ay,
it would follow that

min (Ax,x) = (ax,X) = a(X,X) = a < Ap,

lIxll=1
and
max (Ax, x) = (0x,x) = f{x,x) = > A
which is in contradiction with (9) and (10).
Thus,
”Hl”illl (Ax,x) = A\, (11)

and the solution to the original problem (1) — (2) is the eigenvector x,, of A associated
with A,,, and at the same time we obtained that

max (AxX,X) = Ay (12)

lIx[[=1

and the solution to this problem is the eigenvector x,; of A associated with \;;, where
Am and Aj; were defined above.

4 Conclusions

As it is reasonable to expect, both approaches — Lagrange multipliers theorem on the one
hand, and the Cauchy-Schwarz inequality along with the properties of induced matrix
norms, on the other hand — for solving the problem under consideration give the same
result.
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