References |
[1] P. Berman, N. Kovoor, and P.M. Pardalos, Algorithms for the
least distance problem, in: Complexity in Numerical Optimization,
P.M. Pardalos (Ed.), World Scientific, New Jersey, 1993, pp. 33-56.
[2] D.P. Bertsekas, Projected Newton methods for optimization
problems with simple constraints, SIAM J. Control Optim. 20 (1982)
221-246. [3] G.R. Bitran, A.C. Hax, Disaggregation and resource
allocation using convex knapsack problems with bounded variables,
Management Sci. 27 (1981), No. 4, 431-441. [4] J.R. Brown, Bounded
knapsack sharing, Math. Program. 67 (1994), No. 3, 343 - 382. [5]
P. Brucker, An O(n) algorithm for quadratic knapsack problems,
Oper. Res. Lett. 3 (1984), No. 3, 163-166. 18 [6] P.H. Calamai,
J.J. Morґe, Quasi-Newton updates with bounds, SIAM J. Numer. Anal.
24 (1987), No. 6, 1434-1441. [7] A. Charnes, W.W. Cooper, The
theory of search: optimum distribution of search effort, Management
Sci. 5 (1958), 44-50. [8] R.W. Cottle, S.G. Duval, K. Zikan, A
Lagrangean relaxation algorithm for the constrained matrix problem,
Naval Res. Logist. Quart. 33 (1986), No. 1, 55-76. [9] R.S. Dembo,
U. Tulowitzki, On the minimization of quadratic functions subject
to box constraints, Working Paper Series B 71, School of
Organization and Management, Yale University, New Haven, 1983. [10]
J.-P. Dussault, J.A. Ferland, B. Lemaire, Convex quadratic
programming with one constraint and bounded variables, Math.
Program. 36 (1986), No. 1, 90-104. [11] J.A. Ferland, B. Lemaire,
P. Robert, Analytic solutions for nonlinear programs with one or
two equality constraints, Publication 285, Departement
d'informatique et de recherche operationnelle, Universitґe de
Montrґeal, Montrґeal, 1978. [12] S.M. Grzegorski, Orthogonal
projections on convex sets for Newton-like methods, SIAM J. Numer.
Anal. 22 (1985), 1208-1219. [13] M. Held, P. Wolfe, H.P. Crowder,
Validation of subgradient optimization, Math. Program. 6 (1974),
62-88. [14] R. Helgason, J. Kennington, H. Lall, A polynomially
bounded algorithm for a singly constrained quadratic program, Math.
Program. 18 (1980), No. 3, 338-343. [15] G.T.Herman, A.Lent, A
family of iterative quadratic optimization algorithms for pairs of
inequalities, with application in diagnostic radiology, Math.
Program. Study 9 (1978), 15-29. [16] N. Katoh, T. Ibaraki, H. Mine,
A polynomial time algorithm for the resource allocation problem
with a convex objective function, J. Oper. Res. Soc. 30 (1979), No.
5, 449-455. [17] H. Luss, S.K. Gupta, Allocation of effort
resources among competing activities, Oper. Res. 23 (1975), No. 2,
360-366. [18] R.K. McCord, Minimization with one linear equality
constraint and bounds on the variables, Technical Report SOL 79-20,
System Optimization Laboratory, Department of Operations Research,
Stanford University, Stanford, 1979. [19] C. Michelot, A finite
algorithm for finding the projection of a point onto the canonical
simplex of IRn, J. Optim. Theory Appl. 50 (1986), No. 1, 195-200.
[20] J.J. Morґe, G. Toraldo, Algorithms for bound constrained
quadratic programming problems, Numer. Math. 55 (1989), No. 4,
377-400. [21] J.J. Morґe, S.A. Vavasis, On the solution of concave
knapsack problems, Math. Program. 49 (1991), No. 3, 397-411. [22]
P.M. Pardalos, N. Kovoor, An algorithm for a singly constrained
class of quadratic programs subject to upper and lower bounds,
Math. Program. 46 (1990), No. 3, 321-328. 19 [23] P.M.Pardalos, Y.
Ye, C.-G. Han, Algorithms for the solution of quadratic knapsack
problems, Linear Algebra Appl. 152 (1991), 69-91. [24] A.G.
Robinson, N. Jiang, C.S. Lerme, On the continuous quadratic
knapsack problem, Math. Program. 55 (1992), No. 1, 99-108. [25]
R.T. Rockafellar, R.J.-B. Wets, A note about projections in the
implementation of stochastic quasigradient methods, in: Numerical
Techniques for Stochastic Optimization, Yu. Ermoliev, R.J.- B. Wets
(Eds.), Springer Verlag, Berlin, 1988, pp. 385-392. [26] S.M.
Stefanov, On the implementation of stochastic quasigradient methods
to some facility location problems, Yugosl. J. Oper. Res., 10
(2000), No. 2, 235-256. [27] S.M. Stefanov, Convex separable
minimization subject to bounded variables, Comput. Optim. Appl. 18
(2001), No. 1, 27-48. [28] S.M. Stefanov, Convex quadratic
minimization subject to a linear constraint and box constraints,
Appl. Math. Res. Express 2004 (2004), No. 1, 17-42. [29] S.M.
Stefanov, Polynomial algorithms for projecting a point onto a
region defined by a linear constraint and box constraints in IRn,
J. Appl. Math. 2004 (2004), No. 5, 409-431. [30] S.M. Stefanov,
Convex separable minimization problems with a linear constraint and
bounded variables, Int. J. Math. Math. Sci. 2005 (2005), No. 9,
1339-1363. [31] S.M. Stefanov, An efficient method for minimizing a
convex separable logarithmic function subject to a convex
inequality constraint or linear equality constraint, J. Appl. Math.
Decis. Sci. 2006 (2006), No. 1, Article ID 89307, 1-19. [32] S.M.
Stefanov, Minimizing a convex separable exponential function
subject to linear equality constraint and bounded variables, J.
Interdiscip. Math. 9 (2006), No. 1, 207-226. [33] S.M. Stefanov,
Minimization of a convex linear-fractional separable function
subject to a convex inequality constraint or linear inequality
constraint and bounds on the variables, Appl. Math. Res. Express
2006 (2006), No. 2, Article ID 36581, 1-24. [34] S.M. Stefanov,
Minimization of a strictly convex separable function subject to a
convex inequality constraint or linear equality constraints and
bounds on the variables, Sci. Res. 5 (2007) 1-10. [35] S.A.
Vavasis, Local minima for indefinite quadratic knapsack problems,
Math. Program. 54 (1992), No. 2, 127-153. [36] P. Wolfe, Algorithm
for a least-distance programming problem, Math. Program. Study 1
(1974), 190-205. [37] P.H. Zipkin, Simple ranking methods for
allocation of one resource, Management Sci. 26 (1980), No. 1,
34-43.
|