Electronic Issue "Scientific Research"

ISSN: 1312-7535
Title Nanoparticles Produced by Borohydride Reduction as Precursors for Metal Hydride Electrodes
Authors Mario Mitov, A. Popov, I. Dragieva

Abstract

The performance of electrodes, prepared from amorphous CoxByHz nanoparticles without additives, in 20% KOH solution was tested by means of cyclic voltammetry and chronopotentiometry. Peaks, assigned to hydrogen adsorption and desorption, are observed in the cyclic voltammograms. After charging, hydrogen atoms occupy diferent types of sites in the substrate, from which electrochemical desorption occurs. An increase in hydrogen content as a result of repeated cycling was established. Discharge capacity of the electrodes, estimated from the chronopotentiometric discharge curves obtained, is about 250mAh g-1. The observed changes in hydrogen and boron content, due to electrochemical treatment, indicate that the electrode material is an active participant in the whole electrochemical process. Hypotheses for the reaction mechanism are proposed. Keywords: CoxByHz nanoparticles, borohydride reduction, metal hydride electrodes


References

1. M. Ciureanu, Q. M. Yang, D. H. Ryan and J. O. Strom-Olsen, J. Electrochem. Soc. 141 (1994) 2430.
2. I. Paseka, Electrochim. Acta 40 (1995) 1633.
3. D. W. Murphy, S. M. Zahurak, B. Vyas, M. Thomas, M. E. Badding and W. C. Fang, Chem. Mater. 5 (1993) 767.
4. P. Los and A. Lasia, J. Electroanal. Chem. 333 (1992) 115.
5. J. J. Borodzinski and A. Lasia, Int. J. Hydrogen Energy 18 (1993) 985.
6. J. J. Borodzinski and A. Lasia, J. Appl. Electrochem. 24 (1994) 1267.
7. B. Mahdavi, P. Los, M. J. Lessard and J. Lessard, Can. J. Chem. 72 (1994) 2268
8. B. Mahdavi, P. Chambrion, J. Binette, E. Martel and J. Lessard, Can. J. Chem., 73 (1995) 846.
9. I. Dragieva, G. Gavrilov, D. Buchkov and M. Slavcheva, J. Less-Common Met. 67 (1979) 375.
10. I. Dragieva, in Dr. Sci. Thesis, `Amorphous Metal Magnetic Powders Obtained by Borohydride Reduction Process' (1992), Sofia Bulgaria.
11. I. Dragieva, Kr. Russev and M. Stanimirova, J. Less-Common Met. 158 (1990) 295.
12. I. Dragieva, P. Mazdrakov and M. Stanimirova, IEEE Trans. Magn. 28 (1992) 3183.
13. I. Dragieva, D. Mehandjiev, E. Lefterowa, M. Stoycheva and Z. Stoynov, J. Magn. Magn. Mat. 140±144 (1995) 455.
14. E. Lefterova, I. Dragieva, V. Tchanev, D. Mehandjiev and M. Mikhov, ibid. 140±144 (1995) 457.
15. V. Krastev, M. Stoycheva, E. Lefterova, I. Dragieva and Z. Stoynov, J. Alloys Compd. 1±2 (1996) 186.
16. M. Mitov, R. Todorova, S. Manev and A. Popov, J. Mater. Sci. Lett. 16 (1997) 1712.
17. M. Stancheva, S. Manev, D. Lazarov and M. Mitov, Appl. Catalysis A: General 135 (1996) L19.
18. V. Dimitrova, M. Mitov, S. Manev and D. Lazarov, Ann. Sofia Univ. 89 (1997) 11.
19. I. Dragieva, Z. Stoynov, I. Nikolaeva and V. Krastev, J. Solid State Chem. 133 (1997) 273.
20. M. Mitov, A. Popov, K. Petrov, I. Dragieva and Z. Stoynov, in Proceedings of the National Science Session of the Bulgarian Electrochemical Society (edited by V. Bostanov and N. Atanasov), Sofia (1996), p. 233.
21. K. Petrov, A. Rostami, A. Visintin and S. Srinivasan, J. Electrochem. Soc. 141 (1994) 1747.
22. A. Lasia and D. Gregoire, J. Electrochem. Soc., 142 (1995) 3393.
23. R. Kirchheim, M. Kieninger, X. Y. Huang, S. M. Filipek, J. Rush and T. Udovic, J. Less-Common Met. 172 (1991) 880.
24. L. Bai, J. Electroanal. Chem. 355 (1993) 37.
25. I. Dragieva, M. Mitov, A. Popov, Tz. Nishev and Z. Stoynov, J. Alloys Compd. (submitted).


About Authors
Download