Electronic Issue "Scientific Research"

ISSN: 1312-7535
Title Spreads in Projective Hjelmslev Space Over Finite Chain Rings
Authors Ivan Landjev

Abstract

We prove a necessary and sufficient condition for the existence of spreads in the projective Hjelmslev geometries PHG����Rn����1 R . Further, we give a construction of projective Hjelmslev planes from spreads that generalizes the familiar construction of projective planes from spreads in PG����n����q.


References

[1] B. Artmann, Hjelmslev-Ebenen mit verfeinerten Nachbarschaftsrelationen, Mathematische Zeitschrift 112(1969), 163-180. [2] A. R. Hammons, P. VijayKumar,A. R. Calderbank, N. J. A. Sloane, P. Solй, The����4-Linearity of Kerdock, Preparata, Goethals and Related Codes, IEEE Transactions on Information Theory 40(1994), 301-319. [3] W. E. Clark and D. A. Drake, Finite chain rings, Abhandlungen aus dem mathematischen Seminar der Universitдt Hamburg 39(1974), 147-153. [4] A. Cronheim, Dual numbers, Witt vectors, and Hjelmslev planes, Geometriae Dedicata 7(1978), 287-302. [5] D. Drake, On n-Uniform Hjelmslev Planes, Journal of Combinatorial Theory 9(1970), 267-288. [6] J. W. P. Hirschfeld, "Projective geometries over finite fields", Clarendon Press, Oxford, 1998. [7] L. Hemme, T. Honold, and I. Landjev. Arcs in projective Hjelmslev spaces obtained from Teichmьller sets. In Proceedings of the Seventh International Workshop on Algebraic and Combinatorial Coding Theory (ACCT-2000), pages 177-182, Bansko, Bulgaria, 2000. [8] Th. Honold and I. Landjev, Projective Hjelmslev geometries, Proc. of the International Workshop on Optimal Codes, Sozopol, 1998, 97-115. [9] Th. Honold and I. Landjev, On arcs in projective Hjelmslev planes, Discrete Mathematics 231(2001), 265-278. [10] I. Landjev and T. Honold. Arcs in projective Hjelmslev planes, Discrete Mathematics and Applications, 11(1)(2001), 53-70, originally published in Diskretnaya Matematika (2001) 13, No. 1, 90-109 (in Russian). [11] T. Honold and I. Landjev. On maximal arcs in projective Hjelmslev planes over chain rings of even characteristic. Finite Fields and their Applications, 11(2):292-304, 2005. [12] A. Kreuzer, Hjelmslev-Rдume, Resultate der Mathematik 12(1987), 148-156. [13] A. Kreuzer, Projektive Hjelmslev-Rдume, Dissertation, Technische Universitдt Mьnchen, 1988. [14] A. Kreuzer, Hjelmslevsche Inzidenzgeometrie - ein Bericht, Bericht TUM-M9001, Technische Universitдt Mьnchen, January 1990, Beitrдge zur Geometrie und Algebra Nr. 17. [15] B. R. McDonald, "Finite rings with identity", Marcel Dekker, New York, 1974. [16] A. A. Nechaev, Finite principal ideal rings, Mat. Sbornik of the Russian Academy of Sciences. 20(1973), 364-382. [17] A. A. Nechaev, Kerdock Code in Cyclic Form, Discrete Mathematics and Applications 1(1991), 365-384. (English translation) [18] A.A. Nechaev, A.S. Kuzmin, Trace function on a Galois ring in coding theory, in: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC) 12, T. Mora and H. F. Mattson, Jr., eds., Lect. Notes Comp. Sci. 1255, 1997, 277-290. [19] R. Raghavendran, Finite associative rings, Compositio Mathematica 21 (1969), 195-229. 8 IVAN LANDJEV [20] A.G. Shanbhag, P.V. Kumar, T. Helleseth, An upper bound for the extended Kloosterman sums over Galois rings, Finite Fields and their Applications 4(1998), 218-238. [21] F. D. Veldkamp, Geometry over rings, Handbook of Incidence Geometry-Buildings and Foundations (Francis Buekenhout, ed.), Elsevier Science Publishers, 1995, pp. 1033-1084. [22] E.Witt, Zyklische Kцrper und Algebren der Charakteristik p vom Grad pn, Journal fьr die reine und angewandte Mathematik 176(1937), 126-140.


About Authors
Download